Just the number 2 to get the cofficients
When two fluorine atoms bond together in f2 the type of covalent bond do they form is non-polar covalent bond.
Explanation
They are two type of covalent bond. that is non polar covalent bond and polar covalent bond.
Non polar covalent bond is formed when atoms share a pair of electrons with each other equally.
polar covalent bond is bond formed when atoms share a pair electrons unequally.
F2 is a non polar since it is made up of two same atoms which has the same electronegativity, therefore equal number of electrons exist in the orbital overlap.
Answer:
V₂ = 568.9 mL
Explanation:
Given data:
Volume of gas = 550 mL
Pressure of a gas = 960 mmHg
Temperature = 200.0°C ( 200+273 = 473 K)
Final volume = ?
Final pressure = 830 mmHg
Final temperature = 150°C (150+273 = 423 K)
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 960 mmHg × 550 mL × 423 K / 473 K ×830 mmHg
V₂ = 223344000 mL / 392590
V₂ = 568.9 mL
The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609
The wave-mechanical model of the atom is required to explain the spectra of elements with multi electron atoms.
<u>Explanation:</u>
Wave mechanical theory say that every electron surrounding a nucleus occupies a certain orbit and moves in a certain direction, but the orbit is like a wave of energy or cloud but not a ring. It was proposed in the 1920s, when scientists Erwin Schrodinger and Louis Victor de Broglie concluded that the Bohr’s model is not suitable for electron location determination.
Based on many assumptions, scientists began to guess as accurately as possible about the behaviour of electrons at different energy levels around the nucleus. Because all electrons are negatively charged, they tend to push their elbows when they are too close together, moving away and changing direction. Each plane has one or more orbits that have more than one electrons that move around the nucleus in a specific patterns or shape.