Answer:
b) No acceleration in the vertical
c) 35N
d) 35N
e) 
Explanation:
a) The situation can be shown in the free body diagram shown in the figure below where F is the applied force, Fr is the friction force, W is the weight of the book and N is the normal force exerted vertically up from the desk to the book
b) The vertical movement is restrained by the normal force which opposes to the weight. In absence of any other force, they both are in equilibrium and the net force is zero
c) The net horizontal force acting on the book is the vectorial sum of the applied force and the friction force. Since they lie in the same axis and are opposed to each other:

d) The net force acting on the book is the vector sum of all forces in all axes. The normal and the weight cancel each other in the y-axis, so our resulting force is the x-axis net force, computed as above:
in the x-axis
e) Following Newton's second law, the acceleration is calculated as

Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M /
²
And Newton's second law
W = m g
W = F
G m M /
² = mg
g = G M /
²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
Answer:
A calorimeter uses the temperature change of water to determine the <u>specific heat </u> of another substance.
Explanation:
Answer:lefmprkfniou4gjkfjrnwerkjdkcheouvwe
Explanation:fefefefrgff
A :-) for this question , we should apply
a = v - u by t
Given - u = 4.77 m/s
v = 23.5 m/s
t = 5.18 m/s
Solution -
a = v - u by t
a = 23.5 - 4.77
a = 28.27 m/s^2
.:. The acceleration is 28.27 m/s^2