<h3>Answer:</h3>
Curium-247 <em>i.e.</em> ²⁴⁷₉₆Cm
<h3>Explanation:</h3>
Alpha decay is given by following general equation,
ᵃₓA → ⁴₂He + ᵃ⁻⁴ₓ₋₂B
Where;
A = Parent Isotope
B = Daughter Isotope
ᵃ = Mass Number
ₓ = Atomic Number
Californium-251 is the parent isotope in our case and it has 98 protons (atomic number) and is given as,
²⁵¹₉₈Cf
The alpha decay reaction of Californium-251 will be as,
²⁵¹₉₈Cf → ⁴₂He + ²⁴⁷₉₆B
The symbol for B with atomic number 96 was found to be the atom of Curium (Cm) by inspecting periodic table. Hence, the final equation is as follow,
²⁵¹₉₈Cf → ⁴₂He + ²⁴⁷₉₆Cm
A good example is cigarretes they try to scare you into not smoking by telling you all of the downsides of smoking like lung cancer and i guess that would be fear appeal
Answer:
electron-electron repulsion
Explanation:
When electrons add into valence shell of neutral elements, the element assumes a negative oxidation state. With this, the number of electrons having (-) charges will be larger than the number of protons having positive (+) charges. As a result, the extra electrons repel one another (i.e., like charges repel) and a larger radius is the result.
In contrast, when cations are formed, electrons are removed from the valence level (oxidation) producing an element having a greater number of protons than electrons. The larger number of protons will function to attract the electron cloud with a greater force that results in a contraction of atomic radius and a smaller spherical volume than the neutral unionized element.
To visualize, see attached chart that shows atomic and ionic radii before and after ionization of the elements.
Blood flowing into and out your heart makes your pulse
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.
In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
=
= 0.001
The change in Concentration Δ
= 0.001
CH3COOH H+ CH3COOH
Initial
0 0
Change
-0.001 +0.001 +0.001
Equilibrium
- 0.001 0.001 0.001
Since the
value is so small, the assumption
can be made.
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!