Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
First let us calculate for the molar mass of ibuprofen:
Molar mass = 13 * 12 g/mol + 18 * 1 g/mol + 2 * 16 g/mol
Molar mass = 206 g/mol = 206 mg / mmol
Calculating for the number of moles:
moles = 200 mg / (206 mg / mmol)
moles = 0.971 mmol = 9.71 x 10^-4 moles
Using the Avogadros number, we calculate the number of
molecules of ibuprofen:
Molecules = 9.71 x 10^-4 moles * (6.022 x 10^23 molecules
/ moles)
<span>Molecules = 5.85 x 10^20 molecules</span>
Answer:
Exothermic reaction
Explanation:
Exothermic reaction is a reaction in which energy is evolved from the reaction to the surroundings
When we can get the Kinetic energy from this formula KE= 1/2 M V^2and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so, KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force (9.8 m^2/s) and H is the height of the fall (8 m).
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s