Answer: We can define the solar constant as a measure of the luminous flux density.
Explanation:
The solar constant or solar constant is the amount of energy radiated at the upper limit of the Earth's atmosphere per unit time perpendicular to the unit surface, at the Earth's mean distance from the sun. Amounts to 1367.7 W / m² ± 6 W / m². The sun's constant includes all kinds of electromagnetic radiation, not just visible light. The average value is 1,368 kW / m2 and changes slightly with solar cycles. The amount of these constant changes over one year and has different benefits.
Answer:
F= 403429 kpa
Explanation:
Pressure is the product of force and area
Mathematically,
P=F*A -------where F is force and A is area.
A= 40 *0.1 = 4mm² -----convert to m²
A= 4e⁻⁶ m²
P= 4000000 pa
F= P/A = 4000000/4e⁻⁶
F= 403428793.493 pa
F= 403429 kpa
Answer:
1 / f = 1 / i + 1 / o thin lens equation
1 / i = 1 / f - 1 / o = (o - f) / (o * f)
i = o * f / (o - f)
i = 54.2 * 12.7 / (54.2 - 12.7) = 16.6 cm image distance
Image is real and inverted and 16.6 / 54.2 * 6 = 1.94 cm tall
Answer:
The first difference is fairly straightforward: other countries prefer other sports. While some aspects of American sports culture are universal there are other things that are sports-specific, such as the 7th-inning stretch at a baseball game or counting the steps of a basketball player after he fouls out.
Explanation:
Answer:
537 N
Explanation:
The force due to gravity of a planet is:
F = GMm / r²
where G is the universal gravitational constant
M is the mass of the planet
m is the mass of the object
and r is the distance between the object and the center of the planet
On Earth, you weigh 716 N, so:
716 N = GMm / r²
On planet X:
F = G (3M) m / (2r)²
F = 3/4 GMm / r²
F = 3/4 (716 N)
F = 537 N