“a point representing the mean position of the matter in a body or system.”
Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
Answer:four times
Explanation:
Given
mass of both cars A and B are same suppose m
but velocity of car B is same as of car A
Suppose velocity of car A is u
Velocity of car B is 2 u
A constant force is applied on both the cars such that they come to rest by travelling certain distance
using to find the distance traveled
where, v=final velocity
u=initial velocity
a=acceleration(offered by force)
s=displacement
final velocity is zero
For car A


For car B


divide 1 and 2 we get

thus 
distance traveled by car B is four time of car A
True, the path of the ball, as observed from the train window, will be a horizontal straight line.
An object projected from a certain height has a parabolic path when observed from a fixed point.
However, if the reference point is moving at the same velocity as the object, the path of the object's motion appears to be a straight line.
When the ball is released from the window of the train, it will move at the same constant velocity as the train, and the path of the ball's motion observed from the train window will be a straight line.
Thus, we can conclude that the given statement is true. The path of the ball, as observed from the train window, will be a horizontal straight line.
Learn more about path of motion of objects here: brainly.com/question/82610
Kepler's second law of planetary motion<span> describes the speed of a </span>planet<span> traveling in an elliptical orbit around the sun. It states that a line between the sun and the </span>planetsweeps equal areas in equal times. Thus, the speed of theplanet<span> increases as it nears the sun and decreases as it recedes from the sun.</span>