A scientific theory is different from a hypothesis because a theory is a educated guess that is being worked on and proven correct and a hypothesis is a educated guess it is a guess that needs to be proven.
Answer:
An <u>applied force</u> is a force that is applied to an object by a person or another object. If a person is pushing a desk across the room, then there is an applied force acting upon the object. The applied force is the force exerted on the desk by the person.
A <u>friction force</u> is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing intermolecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an object can be calculated using the formula below:
= µ •
In the given question, one important information for getting to the actual solution is not given and that is the atmospheric pressure. To find the approximate absolute pressure, it is needed to add the value of atmospheric pressure with the gage pressure.
Atmospheric pressure = 100 kPa
Then
Absolute pressure = 156 + 100 kPa
= 256 KPa.
AnswerA tell me what u got sorry if its worng
Explanation:
Answer:
A_resulting = 0.2 m
Explanation:
Let's analyze the impact of the pulse with the pole, this is a fixed obstacle that does not move therefore by the law of action and reluctant, the force that the pole applies on the rope is of equal magnitude to the force of the rope on the pole (pulse), but opposite directional, so the reflected pulse reverses its direction and sense.
With this information we analyze a point on the string where the incident pulse is and each reflected with an amplitude A = 0.1 m, the resulting is
A_res = 2A
A_resultant = 2 .01
A_resulting = 0.2 m