Answer:
Explanation:
Speed of the source of sound = v = 44.7 m/s
Speed of sound = V = 343 m/s
a) Apparent frequency as the train approaches = f = [V /(V -v) ] × f
= [343 / (343 - 44.7) ] × 415 = 477.18 Hz
Wave length = λ = v / f = 343 / 477.18 = 0.719 m
b) Frequency heard as the train leaves = f ' = [V / ( V + v) ] f
= [343 / { 343 + 44.7 ) ] x 415
= 367.2 Hz
Wavelength when leaving = v / f = 343 / 367.2 = 0.934 m
Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. Both conduction and convection require matter to transfer heat. Conduction is the transfer of heat between substances that are in direct contact with each other. Thermal energy is transferred from hot places to cold places by convection. Radiation is a method of heat transfer that does not rely upon any contact between the heat source and the heated object as is the case with conduction and convection. Heat can be transmitted through empty space by thermal radiation often called infrared radiation.
Explanation:
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
Answer: W = 294 J
Explanation: Solution:
Work is expressed as the product of force and the distance of the object.
W = Fd where F = mg
W= Fd
= mg d
= 15 kg ( 9.8 m/s²) ( 2m )
= 294 J