(a) James has the most momentum which is 294 kgm/s.
(b) The resultant force acting on Basma is 90.78 N.
(c) The time taken for James to stop is 3.2 seconds.
<h3>
Momentum of each person</h3>
Momentum of James: P = mv = 98 x 3 = 294 kgm/s
Momentum of Basma: P = mv = 59 x 4 = 236 kgm/s
<h3>Resultant force of Basma</h3>
F = ma = mv/t = P/t = 236/2.6 = 90.78 N
<h3>Time for James to stop</h3>
F = P/t
t = P/F
t = 294/90.78
t = 3.2 s
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Explanation:
here u = 50m/s
v = 60m/s
t = 58 s
then a = (60-50)/58 m/s2
= 0.17m/s2
now s= ut+1/2at2
so , 50×58+0.5×0.17×(58)^2 m
= 3185.94 m
= 3.18 km
Buoyancy is a force that always acts in an upward direction exerted by a fluid on a body placed in the fluid
Hope this helps :)
To solve this problem we will apply the concepts related to the final volume of a body after undergoing a thermal expansion. To determine the temperature, we will use the given relationship as well as the theoretical value of the volumetric coefficient of thermal expansion of copper. This is, for example to the initial volume defined as , the relation with the final volume as
Initial temperature =
Let T be the temperature after expanding by the formula of volume expansion
we have,
Where is the volume coefficient of copper
Therefore the temperature is 53.06°C