Answer:
trigonal planar
Explanation:
Tri=three, three-dimensional arrangement of the atoms that constitute a molecule.
Answer:
It's an open system, tranfering heat through a rigid, diathermal wall and matter through an imaginary and permeable wall, and it is not at steady state.
Explanation:
- An <em>open system</em> is that that interacts with its surroundings exchanging energy and matter. In an open pan with boiling water you have an open system because steam (matter) is leaving the system, as well as heat (energy) through the pan/stove.
- A<em> boundary</em> is what separates the system from its surroundings, there are many types of boundaries, based on how they transfer energy they can be diathermal (conducting heat) or adiabatic (insulating), on their rigidity they can be rigid, flexible, imaginary or movable and based on their permeability. For the system described we have an imaginary boundary on top that is also permeable allowing matter to go out or in the system, and another wall (the stove/pan itself that is rigid and impermeable avoiding the loss of matter and diathermal, allowing the conduction of heat.
- It is said that a system is at a<em> steady state</em> when the variables that define that system remain constant over time. In an open pan, you can't fully control those variables, you'll have matter and energy scaping from it with no way to regulate it.
I hope you find interesting and useful this information! good luck!
Answer:
C6H6 has the strongest intermolecular force
i think
Moles of Bromine produced = 9 moles
<h3>Further explanation</h3>
Given
9 moles of Chlorine gas
Word equation
Required
Moles of Chlorine produced
Solution
We change the word equation into a chemical equation (with a formula)
Aluminum bromide reacts with chlorine gas to produce Aluminum chloride and bromide gas
2AlBr₃+3Cl₂⇒2AlCl₃+3Br₂
moles Cl₂ = 9
Maybe you mean, <em>how many moles of Bromine can we produce?</em>
From equation, mol ratio Cl₂ : Br₂ = 3 : 3, so mol Br₂=mol Cl₂=9 moles
<span> </span><span>Fusion
reaction is a type of nuclear reaction where two or more nuclei combine or
collide to form an element with a higher atomic number. This happens when the
collision is in a very high speed. In this process, some of the matter of the
fusing nuclei is converted to energy.</span>