Answer:
a = 7.29 m / s², T = 0.40 N
Explanation:
To solve this exercise we must apply Newton's second law to each body
The needle
W -T = m a
mg - T = ma
The spool, which we will approach by a cylinder
Σ τ = I α
T R = I α
the moment of inertia of a cylinder with an axis through its center is
I = ½ M R²
angular and linear variables are related
a = α R
α = a / R
we substitute
T R = (½ M R²) a / R
T = ½ M a
we write our system of equations together
mg - T = m a
T = ½ M a
we solve
m g = (m + ½ M) a
a =
let's calculate
a =
a = 7.29 m / s²
now we can look for the tension
T = ½ M a
T = ½ 0.110 7.29
T = 0.40 N
Kinetic energy is half the product of the mass and the square velocity and at highest point the velocity is 0 thus the kinetic energy is 0 J
<span>The power output is calculated by multiplying the weight of the elevator (1000 kg) by g (9.8 m/s^2) and by the distance (10 m), then dividing the product by the time (10 s). Thus, the power output of the second motor is 9800 watts.</span>
Answer:
B = 0.126 T
Explanation:
As per Faraday's law we know that rate of change in magnetic flux will induce EMF in the coil
So here we can say that EMF induced in the coil is given as

initially the coil area is perpendicular to the magnetic field
and after one fourth rotation of coil the area vector of coil will be turned by 90 degree
so we can say


now we will have



Answer:
I think it is but I don't know for sure
Explanation:
41 101001
41 is 101001 on the binary table i think