Answer:
Capacitance of cylindrical capacitor does not depends on the amount of charge on the conductors
Explanation:
Consider a cylindrical capacitor of length L, inner radius R₁ and outer radius R₂, permitivity ε₀ constant then capacitance of cylindrical capacitor is given by:
From this equation it is clear that capacitance of cylindrical capacitor is independent of the amount of charge on the conductors where as directly proportional permitivity constant and length of cylinder where as inversely proportional to natural log of ratio of R₂ and R₁
I know i did part a correctly. heres what i did: momentum is conserved: m1 * u - m2 * u = m2 * v or (m1 - m2) * u = m2 * v Also, for an elastic head-on collision, we know that the relative velocity of approach = relative velocity of separation (from conservation of energy), or, for this problem, 2u = v Then (m1 - m2) * u = m2 * 2u m1 - m2 = 2 * m2 m1 = 3 * m2 m1 is the sphere that remained at rest (hence its absence from the RHS), so m2 = 0.3kg / 3 m2 = 0.1 kg b) this part confuses me, heres what i did (m1 - m2) * u = m2 * v (.3kg - .1kg)(2.0m/s) = .1kg * v .4 kg = .1 v v = 4 m/s What my teacher did: (.3g - .1g) * 2.0m/s = (.3g + .1g) * v I understand the left hand side but i dont get the right hand side. Why is m1 added to m2 when m1 is at rest which makes its v = zero?? v = +1.00m/s since the answer is positive, what does that mean? Also, if v was -1.00m/s what would that mean? thanks!
<span>Reference https://www.physicsforums.com/threads/elastic-collision-with-conservation-of-momentum-problem.651261...</span>
Explanation:
Contact, vision, sound, flavor, and smell are all markers of energy transformations. The most basic example would be when we notice something has begun to pass through vision. Whenever an entity accelerates or slows down, energy is constantly transformed.
Answer:
D
Explanation:
She says that the object of the experiment is to see how far the string stretches given a mass attached to the string.
The only thing that is at issue is either the mass or the amount the string stretches.
Nothing else matters.
The dependent variable therefore is the amount the string stretches. So the last choice is the answer.