The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
Answer:
Weight
a) weight's vertical component = Normal upward force
b) weight's horizontal component = Friction force = (mass of ball)(acceleration)
These forces depend upon the track,
1) inclined or horizontal
2) steepness.
Explanation
The force of gravity points straight down, but a ball rolling down a ramp doesn't go straight down, it follows the ramp. Therefore, only the component of the weight which points along the direction of the ball's motion can accelerate the ball.
weight's horizontal component = Friction force = (mass of ball)(acceleration)
The other component pushes the ball into the ramp, and the ramp pushes back.
If the ramp is horizontal, then the ball does not accelerate, as gravity pushes the ball into the ramp and not along the surface of the ramp. Hope this helps. Can u give me brainliest
Explanation:
It would be option C. It rotates, or spins, on its axis, but it revolves around the sun.
Answer:
8 seconds
Explanation:
Answer:
Explanation:
Going up
Time taken to reach maximum height= usin∅/g
=3 secs
Maximum height= H+[(usin∅)²/2g]
=80+[(60sin30)²/20]
=125 meters
Coming Down
Maximum height= ½gt²
125= ½(10)(t²)
t=5 secs
Here's link
to the answer:
bit.
ly/3gVQKw3