In that case, there are three possible scenarios:
-- If the braking force is less than the force delivered by the engine,
then the car will continue to accelerate, and the brakes will eventually
overheat and erupt in flame.
-- If the braking force is exactly equal to the force delivered by the engine,
then the car will continue moving at a constant speed, and the brakes will
eventually overheat and erupt in flame.
-- If the braking force is greater than the force delivered by the engine,
then the car will slow down and eventually stop. If it stops soon enough,
then the absorption of kinetic energy by the brakes will end before the
brakes overheat and erupt in flame. Even if the engine is still delivering
force, the brakes can be kept locked in order to keep the car stopped ...
They do not absorb and dissipate any energy when the car is motionless.
Answer:
8.36e2
Explanation:
Use a scientific calculator
Energy Density = 1/2 × ε(0) × (V/d)^2
V = 100, d = 0.01, ε(0) = 8.85 x 10^-12
Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm