1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
1 year ago
15

The wave function for a traveling wave on a taut string is (in SI units)

Physics
1 answer:
weqwewe [10]1 year ago
5 0
  1. The speed of travel of this wave is 3.333 m/s and the direction of the wave is in the positive direction (+x).
  2. The vertical position of an element of the string at t = 0, x = 0.100 m is equal to 5.5 meters.
  3. The wavelength of this traveling wave is equal to 0.667 meter.
  4. The frequency of this traveling wave is equal to 5 Hertz.
  5. The maximum transverse speed of any element of this string is equal to 11.0 m/s.

<h3>How to determine the speed and direction of travel of the wave? </h3>

Since the wave function for this traveling wave on a taut string is (in SI units) is given by y(x,t) = 0.350sin(10πt - 3πx + π/4). Thus, we can logically deduce that the wavelength and angular wave number are as follows:

Wavelength, ω = 10π rad/s.

Angular wave number, k = 3π rad/m.

Now, we can calculate the speed of travel of this wave:

Speed, v = ω/k

Speed, v = 10π/3π

Speed, v = 3.333 m/s.

Based on the wave function, we can logically deduce that the direction of the wave is in the positive direction (+x).

<h3>How to determine the vertical position of an element of the string?</h3>

The vertical position of an element of the string at t = 0, x = 0.100 m is given by:

y(x, t) = 0.350sin(10πt - 3πx + π/4)

y(0.100, 0) = 0.350sin(10π(0) - 3π(0.100) + π/4)

y(0.100, 0) = 0.350sin(-0.157)

y(0.100, 0) = 0.055 cm × 100 = 5.5 meters.

<h3>How to determine the wavelength?</h3>

Mathematically, the wavelength of a traveling wave is given by this formula:

ω = 2π/k

ω = 2π/3π

Wavelength, ω = 0.667 meter.

<h3>How to determine the frequency?</h3>

Mathematically, the frequency of a traveling wave is given by this formula:

Frequency, f = ω/2π

Frequency, f = 10π/2π

Frequency, f = 5 Hertz.

<h3>What is the maximum transverse speed of an element of this string? </h3>

Mathematically, the maximum transverse speed of any element of this string can be calculated by using this formula:

Vmax = ωA = 2πfA

Vmax = 10 × 3.142 × 0.350

Vmax = 10.997 ≈ 11.0 m/s.

Read more on maximum transverse speed here: brainly.com/question/17485563

#SPJ4

Complete Question:

The wave function for a traveling wave on a taut string is (in SI units).

(a) What are the speed and direction of travel of the wave?

(b) What is the vertical position of an element of the string at t = 0, x = 0.100 m?

What are (c) the wavelength and (d) the frequency of the wave?

(e) What is the maximum transverse speed of an element of the string?

You might be interested in
Write down the relation between energy and power​
gizmo_the_mogwai [7]

Answer:

Energy is what makes change happen and can be transferred form one object to another. Energy can also be transformed from one form to another. Power is the rate at which energy is transferred. It is not energy but is often confused with energy.

Explanation:

6 0
3 years ago
Read 2 more answers
You are at home in your air conditioned garage. You are planning a family road trip from New York to Florida. You are lnfating t
Alex
The tires deflated and so that means that you won’t be able to travel
6 0
3 years ago
A falling object accelerates from -10.0 m/s to -30.0 m/s. how much time does it take?
Zepler [3.9K]

Answer:

2.04 s

Explanation:

v = at + v₀

(-30.0 m/s) = (-9.8 m/s²) t + (-10.0 m/s)

t = 2.04 s

8 0
4 years ago
Read 2 more answers
A student wants to determine the impulse delivered to the lab cart when it runs into the wall. The student measures the mass of
forsale [732]
Impulse = Force * times and also Impulse = change in momentum.

Given that the mass does not change, change if momentum = mass * (final velocity -  initial velocity)

Given that you know mass and initial velocity (which is the velicity before the cart hits the wall) you need the final velocity (which is the velocity after the cart hits the wall).

Answer: the velocity of the cart after it hits the wall.
6 0
3 years ago
Hurricanes are considered____ because they lose power over cool waters or land A. Short-lived B. Heat engines C. Weak
klasskru [66]
My best guess would be heat engines
7 0
4 years ago
Read 2 more answers
Other questions:
  • A 55 kg skater spins 12 m/s while carving a circle on the ice that has a radius of 6.0m. What net force must act on the skater t
    15·1 answer
  • If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the initial displacement is 2.25 m, and the
    14·1 answer
  • Why nucleus density is constant. Explain
    8·1 answer
  • Explain how to identify a starting position<br> on a line.
    6·1 answer
  • The amount of work done to produce a sound determines which property of sound waves? A. amplitude B. frequency C. pitch D. wavel
    7·2 answers
  • Which is the final event that occurs when a star is forming ​
    9·1 answer
  • Which of the following must an engineer take into account when designing a roller coaster?
    13·2 answers
  • A bumper car with a mass of 86 kg is traveling at 3.6
    12·1 answer
  • What is the primary mode of energy transfer from hot coffee inside a Thermos bottle to the environment
    12·1 answer
  • How do electromagnetic waves transfer energy?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!