1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
1 year ago
15

The wave function for a traveling wave on a taut string is (in SI units)

Physics
1 answer:
weqwewe [10]1 year ago
5 0
  1. The speed of travel of this wave is 3.333 m/s and the direction of the wave is in the positive direction (+x).
  2. The vertical position of an element of the string at t = 0, x = 0.100 m is equal to 5.5 meters.
  3. The wavelength of this traveling wave is equal to 0.667 meter.
  4. The frequency of this traveling wave is equal to 5 Hertz.
  5. The maximum transverse speed of any element of this string is equal to 11.0 m/s.

<h3>How to determine the speed and direction of travel of the wave? </h3>

Since the wave function for this traveling wave on a taut string is (in SI units) is given by y(x,t) = 0.350sin(10πt - 3πx + π/4). Thus, we can logically deduce that the wavelength and angular wave number are as follows:

Wavelength, ω = 10π rad/s.

Angular wave number, k = 3π rad/m.

Now, we can calculate the speed of travel of this wave:

Speed, v = ω/k

Speed, v = 10π/3π

Speed, v = 3.333 m/s.

Based on the wave function, we can logically deduce that the direction of the wave is in the positive direction (+x).

<h3>How to determine the vertical position of an element of the string?</h3>

The vertical position of an element of the string at t = 0, x = 0.100 m is given by:

y(x, t) = 0.350sin(10πt - 3πx + π/4)

y(0.100, 0) = 0.350sin(10π(0) - 3π(0.100) + π/4)

y(0.100, 0) = 0.350sin(-0.157)

y(0.100, 0) = 0.055 cm × 100 = 5.5 meters.

<h3>How to determine the wavelength?</h3>

Mathematically, the wavelength of a traveling wave is given by this formula:

ω = 2π/k

ω = 2π/3π

Wavelength, ω = 0.667 meter.

<h3>How to determine the frequency?</h3>

Mathematically, the frequency of a traveling wave is given by this formula:

Frequency, f = ω/2π

Frequency, f = 10π/2π

Frequency, f = 5 Hertz.

<h3>What is the maximum transverse speed of an element of this string? </h3>

Mathematically, the maximum transverse speed of any element of this string can be calculated by using this formula:

Vmax = ωA = 2πfA

Vmax = 10 × 3.142 × 0.350

Vmax = 10.997 ≈ 11.0 m/s.

Read more on maximum transverse speed here: brainly.com/question/17485563

#SPJ4

Complete Question:

The wave function for a traveling wave on a taut string is (in SI units).

(a) What are the speed and direction of travel of the wave?

(b) What is the vertical position of an element of the string at t = 0, x = 0.100 m?

What are (c) the wavelength and (d) the frequency of the wave?

(e) What is the maximum transverse speed of an element of the string?

You might be interested in
What is the momentum of an object weighing 7.5 kg moving at 1.6 m/s?
AleksAgata [21]

Answer:

momentum = mass \times velocity \\  = 7.5 \times 1.6 \\  = 12 \: kg {ms}^{ - 1}

3 0
3 years ago
Read 2 more answers
Which statement describes the motion of the sun? (2 points)
Murrr4er [49]

Answer:

D:the.sun.rotated.on.an.axis

Explanation:

8 0
3 years ago
Read 2 more answers
Express 79 m in units of (a) centimeters
dem82 [27]

Answer: a) 7,00 centimeters

(b) 259. 19 feet

(c) 3110.28 inches

(d) 0.049 miles

Explanation:

(a) We know that 1 meter = 100 centimeters

Therefore,

79\ m= 7,900\text{ centimeters}

(b)Since 1 meter = 3.28084 feet

Then, 79\ m= 79\times3.28084=259.18636\approx 259.19\text{ feet}

(c) Since, 1 feet = 12 inches.

79\ m=259.19\text{ feet}=259.19\times12=3110.28\text{ inches}

(d) \text{Since 1 feet= }\dfrac{1}{5280}\text{ mile}

79\ m=259.19\text{ feet}=\dfrac{259.19}{5280}= 0.0490890151515\approx0.049\text{ miles}

8 0
3 years ago
At one particular moment, a 19.0 kg toboggan is moving over a horizontal surface of snow at 4.00 m/s. After 7.00 s have elapsed,
Lina20 [59]

Answer:

10.86 N

Explanation:

Let the average frictional force acting on the toboggan be 'f' N.

Given:

Mass of toboggan (m) = 19.0 kg

Initial velocity (u) = 4.00 m/s

Final velocity (v) = 0 m/s

Time for which friction acts (Δt) = 7.00 s

Now, change in momentum is given as:

\Delta p =Final\ momentum-Initial\ momentum\\\\\Delta p=mv-mu\\\\\Delta p=19.0\ kg(0-4.00)\ m/s\\\\\Delta p=-76.00\ Ns

Now, we know that, change in momentum is equal to the impulse acting on the body. So,

Impulse is, J=\Delta p=-76.00\ Ns

Now, we know that, impulse is also given as the product of average force and the time interval for which it acts. So,

J=f\times \Delta t

Rewriting the above equation in terms of 'f', we get:

f=\dfrac{J}{\Delta t}

Plug in the given values and solve for 'f'. This gives,

f=\frac{-76.00\ Ns}{7.00\ s}\\\\f=-10.86\ N

Therefore, the magnitude of frictional force is |f|=|-10.86\ N|=10.86\ N

3 0
3 years ago
What is general relativity
juin [17]
General relativity is a theory of space and time. The theory was published by Albert Einstein in 1915. The central idea of general relativity is that space and time are two aspects of spacetime. Spacetime is curved when there is gravity, matter, energy, and momentum.
5 0
3 years ago
Other questions:
  • What is the difference between a universal law and a scientific theory?
    10·1 answer
  • If the forces acting on an object are balanced, the object may change speed, change direction, or do both. true or false please
    7·1 answer
  • 15. For waves moving at a constant speed, if the wavelength is doubled, the frequency is
    5·1 answer
  • What is the total precentage of radiation that is reflected by earths atmosphere
    11·1 answer
  • Which of the following seismic wave moves the fastest
    11·1 answer
  • In electromagnetic waves, frequency is inversely proportional to what?
    10·1 answer
  • The electrical charge of an atom as a whole is?
    12·2 answers
  • Why does digital Radiology provide a reduced radiation dose compared to film?
    14·1 answer
  • A bar magnet cut in half will form a total of<br>poles.<br>a)four<br>b)eight<br>c)two​
    11·1 answer
  • 6. A physics book slides off a horizontal table top with a speed of 1.25m/s. It strikes a floor in 0.4s.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!