1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
1 year ago
15

The wave function for a traveling wave on a taut string is (in SI units)

Physics
1 answer:
weqwewe [10]1 year ago
5 0
  1. The speed of travel of this wave is 3.333 m/s and the direction of the wave is in the positive direction (+x).
  2. The vertical position of an element of the string at t = 0, x = 0.100 m is equal to 5.5 meters.
  3. The wavelength of this traveling wave is equal to 0.667 meter.
  4. The frequency of this traveling wave is equal to 5 Hertz.
  5. The maximum transverse speed of any element of this string is equal to 11.0 m/s.

<h3>How to determine the speed and direction of travel of the wave? </h3>

Since the wave function for this traveling wave on a taut string is (in SI units) is given by y(x,t) = 0.350sin(10πt - 3πx + π/4). Thus, we can logically deduce that the wavelength and angular wave number are as follows:

Wavelength, ω = 10π rad/s.

Angular wave number, k = 3π rad/m.

Now, we can calculate the speed of travel of this wave:

Speed, v = ω/k

Speed, v = 10π/3π

Speed, v = 3.333 m/s.

Based on the wave function, we can logically deduce that the direction of the wave is in the positive direction (+x).

<h3>How to determine the vertical position of an element of the string?</h3>

The vertical position of an element of the string at t = 0, x = 0.100 m is given by:

y(x, t) = 0.350sin(10πt - 3πx + π/4)

y(0.100, 0) = 0.350sin(10π(0) - 3π(0.100) + π/4)

y(0.100, 0) = 0.350sin(-0.157)

y(0.100, 0) = 0.055 cm × 100 = 5.5 meters.

<h3>How to determine the wavelength?</h3>

Mathematically, the wavelength of a traveling wave is given by this formula:

ω = 2π/k

ω = 2π/3π

Wavelength, ω = 0.667 meter.

<h3>How to determine the frequency?</h3>

Mathematically, the frequency of a traveling wave is given by this formula:

Frequency, f = ω/2π

Frequency, f = 10π/2π

Frequency, f = 5 Hertz.

<h3>What is the maximum transverse speed of an element of this string? </h3>

Mathematically, the maximum transverse speed of any element of this string can be calculated by using this formula:

Vmax = ωA = 2πfA

Vmax = 10 × 3.142 × 0.350

Vmax = 10.997 ≈ 11.0 m/s.

Read more on maximum transverse speed here: brainly.com/question/17485563

#SPJ4

Complete Question:

The wave function for a traveling wave on a taut string is (in SI units).

(a) What are the speed and direction of travel of the wave?

(b) What is the vertical position of an element of the string at t = 0, x = 0.100 m?

What are (c) the wavelength and (d) the frequency of the wave?

(e) What is the maximum transverse speed of an element of the string?

You might be interested in
A basketball star exerts a force of 3225 n (average value) upon the gym floor in order to accelerate his 76.5-kg body upward. de
ryzh [129]
F = m . g  = 76.5 x 9..8 = 749.7
Net Force = 3225 - 749.7 = 2475.3

F = m.a
2475.3 = 76.5 a

a  = 32.35



V = at + v1
V = at + 0
V = 32.35 x 0.15
V = 4.8525

Hope this helps

8 0
3 years ago
A current of 12 amps is measured in a circuit with a total resistance of 9.0 ohms. What is the size of the voltage source that s
Lynna [10]
A. 108 volts is the answer.
7 0
3 years ago
Read 2 more answers
A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
Damm [24]

Answer

given,                                                

Tension of string is F                                                  

velocity is increased and the radius is not changed.      

the string makes two complete revolutions every second

consider the centrifugal force acting on the stone          

  = \dfrac{mv^2}{r}                          

now centrifugal force is balanced by tension

T =\dfrac{mv^2}{r}                                

From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.

When radius is not changing velocity is increasing means tension will also increase in the string.

8 0
3 years ago
Solve each of these problems, remembering to include formula, calculations, and units!
KATRIN_1 [288]

Answer:

I nEeD heLp

Explanation:

HelP

5 0
3 years ago
If the speed of an object doubles, how does that affect its kinetic energy? A. Halves B. Doubles C. Quarters D. Quadruples
kvasek [131]

Answer is :

D. Quadruples

7 0
3 years ago
Read 2 more answers
Other questions:
  • How much energy is used by a 900 w microwave that operates for 4 minutes ?
    6·1 answer
  • A snail travels at a rate of 2.37 feet per minute. a. Write a rule to describe the function. b. How far will the snail travel in
    5·2 answers
  • Two beams of coherent light travel different paths, arriving at point P. If the maximum destructive interference is to occur at
    6·1 answer
  • What is potential energy? <br><br> Energy released<br> Energy stored<br> Moving Energy
    11·2 answers
  • A thin rod rotates at a constant angular speed. Consider the tangential speed of each point on the rod for the case when the axi
    7·1 answer
  • Explain what physicists mean when they say that the de Broglie wavelength relates to the probability distribution wave function.
    13·1 answer
  • The density of a material is calculated by:
    5·1 answer
  • A bowling ball collides with a tennis ball. Which object has the larger impact force on the other considering that they have the
    10·1 answer
  • 3) Скорость автомобиля увеличилась от 10 м/с до 20 м/с. Во сколько раз увеличилась его
    12·1 answer
  • Method to separate the . <br>sand+iron fillings​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!