1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
2 years ago
13

in the bohr model, which energy transition will result in light being emitted with shortest wavelength?

Physics
1 answer:
RoseWind [281]2 years ago
7 0

The line of shortest wavelength is from n4 - n1.

<h3>What is bohr model ?</h3>

The Bohr model, also known as the Rutherford-Bohr model, was proposed by Niels Bohr and Ernest Rutherford in 1913 and depicts an atomic system with an orbiting system of electrons surrounding a small, dense nucleus. This arrangement is similar to that of the Solar System, except that electrostatic forces act as the forces of attraction rather than gravity.

The line with the shortest wavelength in the hydrogen spectrum is created when an electron in an atom of hydrogen transitions between the first and fourth energy levels (n4 →n1).

The transition n4→ n1 has the largest energy difference between the transitions that are given.

Lower wavelengths correspond to higher energy differences.

to learn more about bohr's model go to -

brainly.com/question/4138548

#SPJ4

You might be interested in
A light spring of constant 163 N/m rests vertically on the bottom of a large beaker of water.
LUCKY_DIMON [66]

Answer:

24.71cm

Explanation:

We approach this problem base don Hooke's law which states the elongation produced in an elastic material is proportional to the applied load or force provided that its elastic limit is not exceeded. This is expressed mathematically as follows;

F=ke................(1)

where F is the applied force, k is the force constant and e is the elongation or extension of the material.

In this problem, the applied force F is the weight of the wood which is calculated as follows,

F=mg.............(2)

m = 4.11kg

g=9.8m/s^2

Hence,

F=4.11*9.8\\F=40.278N

Given that k = 163N/m, we make appropriate substitutions into equation (1) to obtain the following;

40.278=163*e\\e=\frac{40.78}{163}\\e=0.2471m

Since it is required in cm, we perform the conversion as follows, knowing that 100cm = 1m

0.2471m=0.2471*100cm=24.71cm

NB: We do not necessarily need the the density of the wood to perform our calculations since other parameters were given from which we were able to obtain its weight.

7 0
4 years ago
Speedy Sue, que conduce a 30.0 m/s, entra a un túnel de un carril. En seguida observa una camioneta lenta 155 m adelante que se
Romashka [77]

Answer:

Si ocurre una colisión. 5.201 segundos después de que Speedy Sue ingrese al túnel y a una distancia de 128.995 metros.

Explanation:

Supongamos que el vehículo de Speedy Sue decelera a razón constante, mientras que la camioneta se desplaza a velocidad constante. Se requiere conocer si ambos vehículos colisionarán, lo cual implica conocer si existe algún instante tal que ambos tengan la misma posición. Consideremos además que la posición de referencia se encuentra en la posición inicial de Sppedy Sue. Entonces, las ecuaciones cinemáticas son:

Speedy Sue

x_{S} = x_{S,o}+v_{S,o}\cdot t+\frac{1}{2}\cdot a_{S}\cdot t^{2}

Camioneta lenta

x_{C} = x_{C,o} +v_{C}\cdot t

Donde:

x_{S,o}, x_{C,o} - Posiciones iniciales de Speedy Sue y la camioneta lenta, medidas en metros.

v_{S,o} - Velocidad inicial de Speedy Sue, medida en metros por segundo.

v_{S}, v_{C} - Velocidades actuales de Speedy Sue y la camioneta lenta, medidas en metros por segundo.

a_{S} - Deceleración de Speedy Sue, medida en metros por segundo cuadrado.

t - Tiempo, medido en segundos.

Si conocemos que x_{S} = x_{C}, x_{S,o} = 0\,m, x_{C,o} = 155\,m, v_{S,o} = 30\,\frac{m}{s}, v_{C} =-5\,\frac{m}{s} y a_{S} = -2\,\frac{m}{s^{2}}, encontramos la siguiente función cuadrática:

155\,m + \left(-5\,\frac{m}{s} \right)\cdot t = 0\,m+\left(30\,\frac{m}{s} \right)\cdot t +\frac{1}{2}\cdot (-2\,\frac{m}{s^{2}} )\cdot t^{2}

-t^{2}+35\cdot t-155 = 0 (Ec. 1)

Las raíces de esta función son:

t_{1}\approx 29.798\,s, t_{2} \approx 5.201\,s

La colisión ocurriría en la raíz positiva más pequeña, es decir:

t \approx 5.201\,s

Ahora, la posición en que ocurriría la colisión se determina a partir de la ecuación de desplazamiento de la camioneta lenta, es decir: (v_{C,o} = -5\,\frac{m}{s},  x_{C,o} = 155\,m, t \approx 5.201\,s)

x_{C} = 155\,m +\left(-5\,\frac{m}{s}\right)\cdot (5.201\,s)

x_{C} = 128.995\,m

En síntesis, si ocurre una colisión. 5.201 segundos después de que Speedy Sue ingrese al túnel y a una distancia de 128.995 metros.

0 0
3 years ago
A 0.300 kg block is pressed against a spring with a spring constant of 8050 N/m until the spring is compressed by 6.00 cm. When
natita [175]

Answer:

a) \mu_{k} = 0.704, b) R = 0.312\,m

Explanation:

a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:

\frac{1}{2}\cdot k \cdot x^{2} = \mu_{k}\cdot m\cdot g \cdot \Delta s

\mu_{k} = \frac{k\cdot x^{2}}{2\cdot m\cdot g \cdot \Delta s}

\mu_{k} = \frac{\left(8050\,\frac{N}{m} \right)\cdot (0.06\,m)^{2}}{2\cdot (0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (7\,m)}

\mu_{k} = 0.704

b) The speed of the block is determined by using the Principle of Energy Conservation:

\frac{1}{2}\cdot k \cdot x^{2} = \frac{1}{2}\cdot m \cdot v^{2}

v = x\cdot \sqrt{\frac{k}{m} }

v = (0.06\,m)\cdot \sqrt{\frac{8050\,\frac{N}{m} }{0.3\,kg} }

v \approx 9.829\,\frac{m}{s}

The radius of the circular loop is:

\Sigma F_{r} = -90\,N -(0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} ) = -(0.3\,kg)\cdot \frac{v^{2}}{R}

\frac{\left(9.829\,\frac{m}{s}\right)^{2}}{R} = 309.807\,\frac{m}{s^{2}}

R = 0.312\,m

5 0
4 years ago
Find the 24th term of the arithmetic sequence 11, 14, 17, … . Express the 24 terms of the series of this sequence using sigma no
Anna71 [15]

Answer:

The 24th term is 80 and the sum of 24 terms is 1092.

Explanation:

Given that,

The arithmetic series is

11,14,17,........24

First term a = 11

Difference d = 14-11=3

We need to calculate the 24th term of the arithmetic sequence

Using formula of number of terms

t_{n}=a+(n-1)d

Put the value into the formula

t_{24}=11+(24-1)\times3

t_{24}=80

t_{24}=u_{24}=80

We need to calculate the sum of the first 24 terms of the series

Using formula of sum,

S_{n}=\dfrac{n}{2}(a+u_{24})

Put the value into the formula

S_{n}=\dfrac{24}{2}\times(11+80)

S_{n}=1092

Hence, The 24th term is 80 and the sum of 24 terms is 1092.

5 0
4 years ago
How much money can be found in the pockets/purses of the 250 students in a class if no student may carry 2 identical banknotes w
vaieri [72.5K]
The minimum is $1- $5000000
5 0
4 years ago
Other questions:
  • How much time would it take for an airplane to reach its destination if it traveled at an average speed of 790 km/hr for a dista
    5·1 answer
  • A car travels 2 hours at 45 miles/ hour. How far did it go?
    13·1 answer
  • Which process is represented by the PV diagram shown below?
    5·1 answer
  • Scientist A believes she has discovered a new procedure that is better than a procedure currently in use by physicians. She test
    6·2 answers
  • Which type of mountain is created when rock layers are pushed up by forces inside the Earth?
    6·2 answers
  • Swampy areas can be found in many Florida locations. What weather conditions are most frequently found in this environment? *
    6·1 answer
  • A car starts from rest and gains a velocity of 20 m/s in 10 s.Calculate acceleration​
    8·2 answers
  • The chart shows data for a moving object.
    6·1 answer
  • Explain the relationship between lightning and storm clouds.
    13·1 answer
  • Which is not an example of static electricity?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!