Answer:
518 mL
Explanation:
We can solve this using Boyle's Law Formula
P1V1 = P2V2
where p1 = initial pressure, p2 = final pressure, v1 = initial volume and v2 = final volume
here , the initial pressure is 1 atm and the initial volume is 725mL
we are given the final pressure 1.4 and we need to find the final volume
so we have p1v1 = p2v2
==> plug in p1 = 1 , v1 = 725 mL and p2 = 1.4
(1)(725) = (1.4)v2
==> multiply 1 and 725
725 = (1.4)(v2)
==> divide both sides by 1.4
v2 = 518
N2 would have a volume of 518mL at 1.4atm
a covalent bond and an ionic bond. An ionic bond if formed from the transfer of electrons from the outer shell of atoms. ... An example of this is NaCl, where the sodium atom becomes Na+ due to the loss of electrons, and the chlorine atom becomes the negatively charged chloride (Cl-).
214, 84 Po ----Beta decay
Answer:
it is always necessary to use the roman numeral as the assigned charge of the metal.
Explanation:
This is so that one would know which Transition metal is being used. For example copper (II) would be Cu²+
Answer:
0.5 moles of LiOH will absorb 5.6 L of 
Explanation:
According to law of conservation of mass, the sum of mass on the reactant side must be equal to the sum of mass on product side.
The balanced chemical equation is:

2 moles of LiOH absorb 1 mole of
i.e. 22.4 Liters at STP
0.5 moles of LiOH absorb
=
0.5 moles of LiOH will absorb 5.6 L of 