Answer:
Explanation:
oxygen is a 15 and nitrogen science chemistry i'm guessing
The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is: Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.
The chemical formula of sodium hydroxide is NaOH, and its molar mass is 40.01 g/mol. It is the alkali salt of sodium, and its structure is shown below:
It is an ionic compound consisting of sodium cation (Na+) and hydroxide (OH-) anion.
A quantitative observation is not necessarily more useful than a non-quantitative one. However, quantitative observations do allow one to find trends.
(a), the sun rising is a non-quantitative observation.
(b), knowledge of the numerical relationship between the weight on the Moon and on Earth, is a quantitative observation.
(c), watching ice float on water does not involve a measurement; therefore, it must be a qualitative observation.
(d) the fact that we know that the water pump won’t work for depths more than 34 feet makes it quantitative. Again, seeing numbers is a giveaway that it’s a quantitative <span>observation. Quantitative is where you deal with numbers.</span>
Answer:
Receptor
Explanation:
Neurotransmitters are defined as chemical messengers that carry, stimulate and balance signals between neurons, or nerve cells and other cells in the body.
After release, the neurotransmitter crosses the synaptic gap and binds to the receptor site on the other neuron, stimulating or inhibiting the receptor neuron depending on what the neurotransmitter is. Neurotransmitters act as a key and the receptor site acts as a block. It takes the right key to open specific locks. If the neurotransmitter is able to function at the receptor site, it will cause changes in the recipient cell.
The "first-class" neurotransmitter receptors are ligand-activated ion channels, also known as ionotropic receptors. They undergo a change in shape when the neurotransmitter turns on, causing the channel to open. This can be an excitatory or inhibitory effect, depending on the ions that can pass through the channels and their concentrations inside and outside the cell. Ligand-activated ion channels are large protein complexes. They have certain regions that are binding sites for neurotransmitters, as well as membrane segments to make up the channel.