Answer:
The correct answer is - D C2H4.
Explanation:
Saturated hydrocarbons are hydrocarbons with single covalent C-C bonds. They are known as alkanes. The general formula for these hydrocarbons is CnH2n+2
Unsaturated hydrocarbons the hydrocarbons with double or triple covalent C-C bonds. They are known as alkenes and alkynes respectively. The general formula for these hydrocarbons is CnH2n and CnHn-2
For the given options:
Option D: C2H4, is the simplest alkene with a double bond so it is an unsaturated hydrocarbon.
Step 1-Light Dependent
CO2 and H2O enter the leaf
Step 2- Light Dependent
Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2
Step 3- Light Dependent
The electrons move down to enzymes
Step 4-Light Dependent
Sunlight hits the second pigment molecule allowing the enzymes to convert ADP to ATP and NADP+ gets converted to NADPH
Step 5-Light independent
The ATP and NADPH is used by the calvin cycle as a power source for converting carbon dioxide from the atmosphere into simple sugar glucose.
Step 6-Light independent
The calvin cycle converts 3CO2 molecules from the atmosphere to glucose
calvin cycle
The second of two major stages in photosynthesis (following the light reactions), involving atmospheric CO2 fixation and reduction of the fixed carbon into carbohydrate.
Frequency = speed of light
---------------------------
wavelength
= 3 x 10^8
------------------------
344 x 10^-9
= 8.72 x 10^14 Hz.
Hope this helps!
The grams that would be produced from 7.70 g of butanoic acid and excess ethanol is 7.923grams
calculation
Step 1: write the chemical equation for the reaction
CH3CH2CH2COOH + CH3CH2OH → CH3CH2CH2COOCH2CH3 +H2O
step 2: find the moles of butanoic acid
moles= mass/ molar mass
= 7.70 g/ 88 g/mol=0.0875 moles
Step 3: use the mole ratio to determine the moles of ethyl butyrate
moles ratio of CH3CH2CH2COOH :CH3CH2CH2COOCH2CH3 is 1:1 therefore the moles of CH3CH2CH2COOCH2CH3 = 0.0875 x78/100=0.0683moles
step 4: find mass = moles x molar mass
= 0.0683 moles x116 g/mol=7.923grams
Answer:
Fr
Explanation:
Francium (Fr) has the lowest ionization energy, with a value of 4.0727eV. This ionization energy increases as one advances in a period, being greater in the group of nonmetals.