Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Answer:
v = 2.974
Explanation:
Perhaps the formula should be
v = √(2*g*d (sin(θ) - uk*cos(θ) ) This is a bit easier to read.
v = √(2* 9.80*0.725(0.707 - 0.12*0.707) ) Substitute values. Find 2*g*d
v = √14.21 * (0.707 - 0.0849) Figure out Sin(θ) - uk cos(θ)
v = √14.21 * (0.6222)
v = √8.8422 Take the square root of the value
v = 2.974
B.earth rotates on its axis in 24 hours; i.e., it rotates 15° of longitude per hour.
Answer:
Our appliance and electronic energy use calculator allows you to estimate your ... using the formulas provided below; Installing a whole house energy monitoring system. ... energy consumption a few watt-hours, and you can use a monitor to estimate those too. ... Estimate the number of hours per day an appliance runs.
Explanation: