1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
15

The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume tha

t the emissivity eee is equal to 1 for these surfaces.
Required:
a. Find the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7 x 10^31 W and has a surface temperature of 11,000 K.
b. Find the radius RProcyonB of the star Procyon B, which radiates energy at a rate of 2.1 x 10^23 W and has a surface temperature of 10,000 K. Assume both stars are spherical. Use σ=5.67 x 10−8^ W/m^2*K^4 for the Stefan-Boltzmann constant.
Physics
1 answer:
belka [17]3 years ago
8 0

Given that,

Energy H=2.7\times10^{31}\ W

Surface temperature = 11000 K

Emissivity e =1

(a). We need to calculate the radius of the star

Using formula of energy

H=Ae\sigma T^4

A=\dfrac{H}{e\sigma T^4}

4\pi R^2=\dfrac{H}{e\sigma T^4}

R^2=\dfrac{H}{e\sigma T^4\times4\pi}

Put the value into the formula

R=\sqrt{\dfrac{2.7\times10^{31}}{1\times5.67\times10^{-8}\times(11000)^4\times 4\pi}}

R=5.0\times10^{10}\ m

(b). Given that,

Radiates energy H=2.1\times10^{23}\ W

Temperature T = 10000 K

We need to calculate the radius of the star

Using formula of radius

R^2=\dfrac{H}{e\sigma T^4\times4\pi}

Put the value into the formula

R=\sqrt{\dfrac{2.1\times10^{23}}{1\times5.67\times10^{-8}\times(10000)^4\times4\pi}}

R=5.42\times10^{6}\ m

Hence, (a). The radius of the star is 5.0\times10^{10}\ m

(b). The radius of the star is 5.42\times10^{6}\ m

You might be interested in
A generator converts mechanical energy into _____________________ energy.
erica [24]
Electrical energy is your answer.
6 0
3 years ago
Read 2 more answers
What force keeps the outside of a bicycle wheel from flying off?
4vir4ik [10]

Answer:

Centripetal force

Explanation:

8 0
2 years ago
Within a vacuum, the property to all electromagnetic waves is their
bezimeni [28]
The answer is D) Velocity
7 0
4 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
A ball rolls horizontally off a table and a height of 1.4 m with a speed of 4 m/s. How long does it take the ball to reach the g
Hitman42 [59]

For vertical motion, use the following kinematics equation:

H(t) = X + Vt + 0.5At²

H(t) is the height of the ball at any point in time t for t ≥ 0s

X is the initial height

V is the initial vertical velocity

A is the constant vertical acceleration

Given values:

X = 1.4m

V = 0m/s (starting from free fall)

A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)

Plug in these values to get H(t):

H(t) = 1.4 + 0t - 4.905t²

H(t) = 1.4 - 4.905t²

We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:

1.4 - 4.905t² = 0

4.905t² = 1.4

t² = 0.2854

t = ±0.5342s

Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))

t = 0.53s

8 0
3 years ago
Read 2 more answers
Other questions:
  • What temperature has the same value in both the fahrenheit and kelvin scales?
    6·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • Waves that make up the visible part of the electromagnetic spectrum have
    12·1 answer
  • If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, ________ is being
    7·2 answers
  • The period T of a simple pendulum depends on the length L of the pendulum and the acceleration of gravity g (dimensions L/P). (a
    10·1 answer
  • Sound waves are ___ waves &amp; must have a medium to travel through
    5·2 answers
  • After the first few seconds of a race, a runner runs at the same speed until she approaches the finish line, at which point she
    8·1 answer
  • When were the following metals discovered:
    6·1 answer
  • Which is the BEST explanation for why the speed of sound changes for solids, liquids, and gases?
    14·1 answer
  • the reason the moon does not crash into the earth is that the group of answer choices moon has less mass than the earth. moon ha
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!