Answer:
(a) 17634.24 Ω
(b) 0.0068 A
Explanation:
(a)
The formula for inductive inductance is given as
X' = 2πFL................... Equation 1
Where X' = inductive reactance, F = frequency, L = inductance
Given: F = 60 Hz, L = 46.8 H, π = 3.14
Substitute into equation 1
X' = 2(3.14)(60)(46.8)
X' = 17634.24 Ω
(b)
From Ohm's law,
Vrms = X'Irms
Where Vrms = Rms Voltage, Irms = rms Current.
make Irms the subject of the equation
Irms = Vrms/X'...................... Equation 2
Given: Vrms = 120 V, X' = 17634.24 Ω
Substitute into equation 2
Irms = 120/17634.24
Irms = 0.0068 A
Answer: 0.42 Amperes
Explanation:
Given that:
Current, I = ?
Electric charge Q = 100 coulomb
Time, T = 4.0 minutes
(The SI unit of time is seconds. so, convert 4.0 minutes to seconds)
If 1 minute = 60 seconds
4.0 minutes = 4.0 x 60 = 240 seconds
Since electric charge, Q = current x time
i.e Q = I x T
100 coulomb = I x 240 seconds
I = 100 coulomb / 240 seconds
I = 0.4167 Amperes (round to the nearest hundredth which is 0.42 amperes)
Thus, 0.42 Amperes of current flows in the circuit.