Answer:
137.2 in pounds and in Newton's it's 588.399
Answer:
6
Explanation:
because I did this assignment, :) your welcome
Next time do it by yourself, but here's the answer kid
There's so much going on here, in a short period of time.
<u>Before the kick</u>, as the foot swings toward the ball . . .
-- The net force on the ball is zero. That's why it just lays there and
does not accelerate in any direction.
-- The net force on the foot is 500N, originating in the leg, causing it to
accelerate toward the ball.
<u>During the kick</u> ... the 0.1 second or so that the foot is in contact with the ball ...
-- The net force on the ball is 500N. That's what makes it accelerate from
just laying there to taking off on a high arc.
-- The net force on the foot is zero ... 500N from the leg, pointing forward,
and 500N as the reaction force from the ball, pointing backward.
That's how the leg's speed remains constant ... creating a dent in the ball
until the ball accelerates to match the speed of the foot, and then drawing
out of the dent, as the ball accelerates to exceed the speed of the foot and
draw away from it.
Answer:
10m/s
Explanation:
Using the law of conservation of momentums
M1u1+m2u2 = (m1+m2)v
Substitute.
4000(10)+1500(10) = (4000+1500)v
40,000+15,000 = 5,500v
55000 = 5500v
v = 55000/5500
v= 10m/s
Hence the velocity of the truck after Collision is 10m/s
Answer:
Explanation:
Frictional force acting on the child = μ mg cosθ
, μ is coefficient of kinetic friction , m is mass of child θ is inclination
work done by frictional force
μ mg cosθ x d , d is displacement on inclined plane
work done = .13 x 276 x cos34 x 5.9
= 175.5 J
This work will be converted into heat energy.
b ) Initial energy of child = mgh + 1/2 m v ² , h is height , v is initial velocity
= 276 x 5.9 sin34 + 1/2 x 276 / 9.8 x .518² [ mass m = 276 / g ]
= 910.59 + 3.77
= 914.36 J
loss of energy due to friction = 175.5
Net energy at the bottom
= 738.86 J
If v be the velocity at the bottom
1/2 m v² = 738 .86
.5 x (276 / 9.8) x v² = 738.86
v² = 52.47
v = 7.24 m /s .