The moment of inertia is 
Explanation:
The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.
The moment of inertia of the rod about its centre is given by

where
M = 24 kg is the mass of the rod
L = 0.96 m is the length of the rod
Substituting,

The moment of inertia of one ball is given by

where
m = 50 kg is the mass of the ball
is the distance of each ball from the axis of rotation
So we have

Therefore, the total moment of inertia of the system is

Learn more about inertia:
brainly.com/question/2286502
brainly.com/question/691705
#LearnwithBrainly
Answer:
10s
Explanation:
If it took Beatrice 25 seconds to complete the race
Distance = 100 meter
Beatrice speed = 100/25
= 4m/s
If Alice runs at a constant speed and crosses the finish line $5$ seconds, she must have completed the race in 20s (25 -5).
Her speed where constant
= 100/20
= 5 m/s
It would take Alice
= 50/5
= 10s
It would take Alice 10s to run $50$ meters.
Answer: C
Frictional force
Explanation:
The description of the question above is an example of a circular motion.
For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.
Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.
Therefore, the correct answer is option C - the frictional force.
Stars form from an accumulation of gas and dust, which collapses due to gravity and starts to form stars. Stars are typically classified by their spectrum in what is known as the Morgan-Keenan or MK system.
Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s