The molar mass of the gene fragment is 19182 g/mol.
What is osmotic pressure ?
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.
We employ the osmotic pressure equation to determine the solute's concentration, which is:
π = iMRT
Using the values in the equation above, we obtain: 19182 g/mol.
To learn more about gene fragment click on the link below:
brainly.com/question/22426204
#SPJ4
Answer:
9.6 mol AgCl2
Explanation:
You have to use Avogadro's number: 6.023 x 10^23
5.78 x 10^24 molecules (1 mol AgCl2/ 6.023 x 10^23 molecules) =9.6 mol AgCl2
Answer:
Molecular formula is C₂₆H₃₆O₄
Explanation:
The compound is 75.69 % C, 8.80 % H and 15.51 % O. This data means, that in 100 g of compound we have 75.69 g, 15.51 g and 8.80 g of, C, O and H, respectively. We know the molar mass of the compound, so we can work to solve the moles of each element.
In 100 g of compound we have 75.69 g C, 15.51 g O and 8.80 g H
In 412 g of compound we would have:
(412 . 75.69) / 100 = 311.8 of C
(412 . 15.51) / 100 = 63.9 g of O
(412 . 8.80) / 100 = 36.2 g of H
Now, we can determine the moles of each, that are contained in 1 mol of compound.
312 g / 12 g/mol 26 C
64 g / 16 g/mol = 4 O
36 g / 1 g/mol = 36 H
Molecular formula is C₂₆H₃₆O₄
Answer:
i know the answer the answer is valence electrons.
Answer:
yhhhhgf make sure
Explanation:
gghbcfg definitely correct