Answer:
Step 1 of 3
Case A:
AISI 1018 CD steel,
Fillet radius at wall=0.1 in,
Diameter of bar
From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel
Tensile strength
Yield strength
The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.
At the critical stress elements on the top and bottom surfaces transverse shear is zero
Explanation:
See the next steps in the attached image
Answer:
a)
(Ω-m)^{-1}
b) Resistance = 121.4 Ω
Explanation:
given data:
diameter is 7.0 mm
length 57 mm
current I = 0.25 A
voltage v = 24 v
distance between the probes is 45 mm
electrical conductivity is given as

![\sigma = \frac{0.25 \times 45\times 10^{-3}}{24 \pi [\frac{7 \times 10^{-3}}{2}]^2}](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%5Cfrac%7B0.25%20%5Ctimes%2045%5Ctimes%2010%5E%7B-3%7D%7D%7B24%20%5Cpi%20%5B%5Cfrac%7B7%20%5Ctimes%2010%5E%7B-3%7D%7D%7B2%7D%5D%5E2%7D)
(Ω-m)^{-1}[/tex]
b)


![= \frac{57 \times 10^{-3}}{12.2 \times \pi [\frac{7 \times 10^{-3}}{2}]^2}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B57%20%20%5Ctimes%2010%5E%7B-3%7D%7D%7B12.2%20%5Ctimes%20%5Cpi%20%5B%5Cfrac%7B7%20%5Ctimes%2010%5E%7B-3%7D%7D%7B2%7D%5D%5E2%7D)
Resistance = 121.4 Ω
Answer:
The range of a set of data is the difference between the highest and lowest values in the set. To find the range, first order the data from least to greatest. Then subtract the smallest value from the largest value in the set.
Explanation:
If a controlled input can transfer (alter) the control system's initial states to some other desired states in a finite amount of time, the control system is said to be controllable.
Using Kalman's test, we can determine whether a control system is controllable. The evolution model for the state variables (time-varying unknowns) and the observation model, which connects the observations to the state variables, make up the state space representation of a dynamical system. The capacity to move a system about in its full configuration space using just specific permitted actions is generally referred to as controllability. The precise definition changes slightly depending on the model type or framework used.
Learn more about control here-
brainly.com/question/28540307
#SPJ4
You can get hurt if u don’t use it properly.