Answer:
The critical length of surface flaw = 6.176 mm
Explanation:
Given data-
Plane strain fracture toughness Kc = 29.6 MPa-m1/2
Yield Strength = 545 MPa
Design stress. =0.3 × yield strength
= 0.3 × 545
= 163.5 MPa
Dimensionless parameter. Y = 1.3
The critical length of surface flaw is given by
= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2
Now putting values in above equation we get,
= 1/3.14( 29.6 / 1.3 × 163.5)^2
=6.176 × 10^-3 m
=6.176 mm
Answer:
Overall project duration
Explanation:
Scheduling can best be defined as the process used to determine a overall project duration.
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Answer:
The operating system
Explanation:
The job of the operating system is to manage system resources allowing the abstraction of the hardware, providing a simple user interface for the user. The operating system is also responsible for handling application's access to system resources.
For this purpose, the operating system allows a user to run applications on their computing device.
Cheers.
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω