Sn + CuSO4 → Cu + SnSO4 I think this should be the answer. Hope it helps.
Idk.... my grade in the school C (about chemistry)
Just use q=mCDeltaT
q=energy
m=mass
c=specific heat
Delta T= Change in temperature
(a) 43.6 mg; (b) 520 mg
(a) <em>Mass of phosphoric acid (PA) in a dose
</em>
Mass of PA = 2 tsp × (21.8 mg PA/1 tsp) = 43.6 mg PA
(b) <em>Mass of PA in the bottle
</em>
<em>Step 1</em>. Convert <em>ounces to millilitres
</em>
Volume = 4 oz × (30 mL/1 oz) = 120 mL
<em>Step 2.</em> Calculate the mass of PA
Mass of PA = 120 mL × (21.8 mg PA/5 mL) ≈ 520 mg PA
Answer:
Explanation:
Mineral
The naturally occurring mineral anglesite, PbSO4, occurs as an oxidation product of primary lead sulfide ore, galena.
Basic and hydrogen lead sulfates
A number of lead basic sulfates are known: PbSO4·PbO; PbSO4·2PbO; PbSO4·3PbO; PbSO4·4PbO. They are used in manufacturing of active paste for lead acid batteries. A related mineral is leadhillite, 2PbCO3·PbSO4·Pb(OH)2.
At high concentration of sulfuric acid (>80%), lead hydrogensulfate, Pb(HSO4)2, forms.[4]
Chemical properties
Lead(II) sulfate can be dissolved in concentrated HNO3, HCl, H2SO4 producing acidic salts or complex compounds, and in concentrated alkali giving soluble tetrahydroxidoplumbate(II) [Pb(OH)4]2− complexes.
PbSO4(s) + H2SO4(l) ⇌ Pb(HSO4)2(aq)
PbSO4(s) + 4NaOH(aq) → Na2[Pb(OH)4](aq) + Na2SO4(aq)
Lead(II) sulfate decomposes when heated above 1000 °C:
PbSO4(s) → PbO(s) + SO3(g)