Answer:
2,3-dimethyl-2-butene > 3-methyl-3-hexene > cis-3-hexene > 1-hexene
Explanation:
According to Saytzeff rule, the more highly substituted an alkene is, the more stable it is. Since this is so, 2,3-dimethyl-2-butene will be the most stable of all the alkenes listed because it is the most substituted alkene.
Let us also note that terminal alkenes are the least stable because the pi bonds of the alkenes are least stabilized by alkyl groups. This implies that 1-hexene is the least stable alkene among the listed alkenes.
Answer:
There are three possible chemical equations for the combustion of sulfur:
- 2S (s) + O₂ (g) → 2SO (g)
- 2S (s) + 3O₂ (g) → 2SO₃ (g)
Explanation:
<em>Combustion</em> is a reaction with oxygen. The products of the reaction are oxides, and energy is released in the form of heat and light.
<em>Sulfur</em> iis a nonmetal, so the oxide formed is a nonmetal oxide.
The most common oxidation numbers of sulfur are -2, + 2, + 4, and + 6.
The combination of sulfur with oxygen may be only with the positive oxidation numbers (+2, + 4, and +6).
Then you have three different equations for sulfur combustion:
<u>1) Oxidation number +2:</u>
Which when balanced is: 2S(g) + O₂(g) → 2SO(g)
<u>2) Oxitation number +4:</u>
That equation is already balanced.
<u>3) Oxidation number +6:</u>
Which when balanced is: 2S(s) + 3O₂(g) → 2SO₃(g)
Carbon dioxide is released when limestone is heated during the production of
. ✔

I think the correct answer among the choices listed above is the third option. Sodium and potassium are the substances that are lost when the body perspires. These substances are dissolved in the sweat you are excreting when you are doing physical activities.
Answer:
solubility in presence of 0.16M Cu(IO₃⁻)₂ = 3.4 x 10⁻⁴M*
Explanation:
Cu(IO₃⁻)₂ ⇄ Cu⁺² + 2(IO₃⁻)
C(i) ---------- 0.16M 0M
ΔC ---------- +x +2x
C(f) ---------- 0.16 + x ≅ 0.16M* 2x
Ksp = [Cu⁺²][IO₃⁻]²
7.4 x 10⁻⁸M³ = 0.16M(2x)² = 0.64x²
x = solubility in presence of 0.16M Cu(IO₃⁻)₂ = SqrRt(7.4x10⁻⁸M³/0.64M²)
= 3.4 x 10⁻⁴M*
*Note: This is consistent with the common ion effect in that a reduction in solubility is expected. The normal solubility of Cu(IO₃⁻)₂ in pure water at 25°C is ~2.7 x 10⁻³M.