Explanation:
Let us assume that the given data is as follows.
V = 3.10 L, T =
= (19 + 273)K = 292 K
P = 40 torr (1 atm = 760 torr)
So, P = 
= 0.053 atm
n = ?
According to the ideal gas equation, PV = nRT.
Putting the given values into the above equation to calculate the value of n as follows.
PV = nRT

0.1643 = 
n = 
It is known that molar mass of ethanol is 46 g/mol. Hence, calculate its mass as follows.
No. of moles =
mass =
g
= 0.315 g
Thus, we can conclude that the mass of liquid ethanol is 0.315 g.
The answer is (3). The number of Sr is the same so if the compound has the smallest gram formula mass, it has the highest percent composition by mass of strontium. So the answer is (3).
Of course they are small
Explanation:
The only way you can see them is by a microscope or a lens and can be anywhere.
A glass jar sitting on a shelf.
If the shelf gets tipped the jar will slide off and convert to kinetic energy as gravity pulls it to land on the next level/floor
Answer:
THE MOLAR MASS OF THE GAS IS 147.78 G/MOLE
Explanation:
Using PV = nRT
n = Mass / molar mass
P = 732.6 mmHg = 1 atm = 760 mmHg
So therefore 732.6 mmHg will be equal to 732.6 / 760 = 0.964 atm
P = 0.964 atm
V = 275 mL = 275 *10 ^-3 L
R = 0.082 Latm/ mol K
T = -28 C = 273 - 28 K = 245 K
mass = 1.95 g
molar mass = unknown
Having known the other variables in the formula, the molar mass of the gas can be obtained.
PV = m R T/ molar mass
Molar mass = m RT / PV
Molar mass = 1.95 * 0.082 * 245 / 0.964 * 275 *10^-3
Molar mass = 39.1755 / 265.1 *10^-3
Molar mass = 39.1755 / 0.2651
Molar mass = 147.78 g/mol
The molar mass of the gas is 147.78 g/mol