Lipids is a kind of biochemical that does not dissolve in water and makes up the cell walls fats oil and waxes
Answer:
represents oxidation.
Explanation:
Oxidation-reduction reaction or redox reaction is defined as the reaction in which oxidation and reduction reactions occur simultaneously.
Oxidation reaction is defined as the reaction in which a substance looses its electrons. The oxidation state of the substance increases.
Example:
Reduction reaction is defined as the reaction in which a substance gains electrons. The oxidation state of the substance gets reduced.
Example: 
represents oxidation.
Answer:
Explanation:
The absorbed sunlight drives photosynthesis, fuels evaporation, melts snow and ice, and warms the Earth system. Solar power drives Earth's climate. Energy from the Sun heats the surface, warms the atmosphere, and powers the ocean currents.
Answer:
Highest speed: He
Lowest speed: CO2
Explanation:
The rms speed (average speed) of the molecules/atoms in an ideal gas is given by:

where
R is the gas constant
T is the absolute temperature of the gas
M is the molar mass of the gas, which is the mass of the gas per unit mole
From the equation, we see that at equal temperatures, the speed of the molecules in the gas is inversely proportional to the molar mass: the higher the molar mass, the lower the speed, and vice-versa.
In this problem, we have 5 gases:
(CO2) (O2) (He) (N2) (CH4)
Their molar mass is:
CO2: 44 g/mol
O2: 16 g/mol
He: 4 g/mol
N2: 14 g/mol
CH4: 16 g/mol
The gas with lowest molar mass is Helium (He): therefore, this is the gas with greatest average speed.
The gas with highest molar mass is CO2: therefore, this is the gas with lowest average speed.
Answer:
3 is the coefficient of oxygen.
Explanation:
Chemical equation:
CH₃OH + O₂ → CO₂ + H₂O
Balanced chemical equation:
2CH₃OH + 3O₂ → 2CO₂ + 4H₂O
The given reaction is combustion reaction. In this reaction methanol is burn in the presence of oxygen and produces carbon dioxide and water.
The balance equation show reaction also follow the law of conservation of mass.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.