b(1 -2) i just too the test
the answer is $34. 36 if I understood your question correctly.
Answer:
52b
Step-by-step explanation:
She has 52 cards per deck, and b decks.
This means she has 52b cards.
How this works:
For 1 deck, she has 52 cards, or 52×1 cards.
For 2 decks, she has 104 cards, or 52×1 cards.
For 5 decks, she has 260 cards, or 52×5 cards.
For 10 decks, she has 520 cards, or 52×10 cards.
Therefore, for b decks, she has 52×b, or 52b cards.
**This content involves writing algebraic expressions, which you may wish to revise. I'm always happy to help!
So if we think of a test tube, it looks sort of like a cylinder. This means that its cross-section would be a circle. To find out how many turns a piece of thread would make around the test tube, we need to find the circumference of the test tube, then divide the length of the string by the circumference.
Step 1) Find the circumference
C = pi x diameter
C = 3.14 x 3
C = 9.42
Step 2) Divide the length of the string by the circumference
90.42 / 9.42 = 9.5987
The string would make approximately 9.60 turns around the test tube.
Hope this helps!! :)
Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.