Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
Nitrous Acid.
Hyponitrous acid: H2N2O2
Nitric acid: HNO3
Pernitric acid: HNO
Answer:
25.7 mL
Explanation:
Step 1: Given data
- Initial concentration (C₁): 0.350 M
- Final volume (V₂): 600 mL
- Final concentration (C₂): 0.150 M
Step 2: Calculate the volume of the initial solution
We have a concentrated solution and we want to prepare a diluted one. We can calculate the initial volume using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.150 M × 600 mL / 0.350 M
V₁ = 25.7 mL
Answer:
What give me a few minutes I have to finish my test them I will answer in comments.
Answer is: intramolecular attractions are stronger.
Intramolecular attractions are the forces between atoms in molecule.
There are several types of intramolecular forces: covalent bonds, ionic bonds.
Intermolecular forces are the forces between molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0.057 = 5.7 %.