Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
CH4+(x)O2=CO2 +(Y)H2O
C=1 +H=4 +O=? = C=1 +O=2+? +H=?
H=4>>Y=2
C=1 +H=4 +O=? = C=1 +O=(2+2) +H=4
C=1 +H=4 +O=4 = C=1 +O=4 +H=4
O=4>>X=2
CH4+(2)O2 =CO2 +(2)H2O
The electron configuration of alkali metals would then resemble those of group 17 of the periodic table in the compounds they form.
<h3>
</h3><h3>
What is periodic table?</h3>
Periodic table is defined as a tabular approach of showing the items so that they appear in the same vertical column or group when their attributes are similar. Phosphorus is the oldest chemical element, and hassium is the newest. Please take note that, unlike in the Periodic system, the elements do not exhibit their natural relationships with one another.
The elements that make up group 17 of the periodic table are the halogens. They are nonmetals that are reactive, such as iodine, bromine, chlorine, and fluorine. Halogens are non-metals that are very reactive. These substances share a lot of characteristics with one another.
Thus, the electron configuration of alkali metals would then resemble those of group 17 of the periodic table in the compounds they form.
<h3>
</h3>
To learn more about periodic table, refer to the link below:
brainly.com/question/11155928
#SPJ2
Conditions:
Low pressure and low temperature
Low pressure and high temperature
High pressure and low temperature
High pressure and high temperature
Ionic compounds conduct electricity when dissolved in water, because the dissociated ions can carry charge through the solution. Molecular compounds don't dissociate into ions and so don't conduct electricity in solution. Electrical conductivity of the compound in liquid form