Answer:
Explanation:
it's worth pointing out that the terms solute and solvent do not really apply here because sulfuric acid is miscible in water, meaning that the two liquids can be mixed in all proportions to form a homogeneous mixture, i.e. a solution.
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1
I think it’s CTell me if I’m wrong
<h3>What is the oxidation number of oxygen in H2O?</h3>
Oxygen almost always has an oxidation number of -2, except in peroxides (H 2 O 2) where it is -1 and in compounds with fluorine (OF 2) where it is +2. Hydrogen has an oxidation number of +1 when combined with non-metals, but it has an oxidation number of -1 when combined with metals.
<h3><em>Sure hoep this helps you :)</em></h3>