1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
2 years ago
15

What’s the weight of a box w/ a mass of 150kg on earth?

Physics
2 answers:
Orlov [11]2 years ago
8 0

\text{Weight ,} W = mg = 150 \times 9.8 =1470N

harkovskaia [24]2 years ago
5 0

Explanation:

f=ma

where force is weight. we know that a is the acceleration of gravity which is -9.8 m/s^2

so f is

-1471.5 N

You might be interested in
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
PLEASE HELP!! ITS DUE AT 11:59!!
DENIUS [597]

Answer:

14.1 po

sana makatulong

3 0
3 years ago
Describe the motion represented by a horizontal line on a distance-time graph.
denpristay [2]

Answer:

hi, this is the answer

Explanation:

A horizontal line on a distance-time graph shows no change in distance, therefore there is no motion.

The object is stationary. ...

Constant speed is motion that occurs with the same ratio of distance to time throughout the entire length of the motion.

pls mark this as the brainliest...

3 0
3 years ago
A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz. The vibrating portion of the string is 0.5
Dahasolnce [82]

Answer:

a

\lambda  = 1.18 \  m

b

v  =  77.172 \  m/s

c

T  = 151.41 \  N

Explanation:

From the question we are told that

   The frequency is  f =  65.4 \  Hz

   The  length of the vibrating string is  L  =  0.590 \  m

   The  mass is  m  =  15.0 \ g  =  0.015 \  kg

Generally the wavelength is mathematically represented as

           \lambda =  2 *  L

=>        \lambda  =  2 *   0.590

=>         \lambda  = 1.18 \  m

Generally the wave speed is  

          v  =  \lambda  *  f

=>       v  =  1.18 * 65.4

=>       v  =  77.172 \  m/s

Generally the tension on the wire is mathematically represented as

        T  =  v^2  *  \frac{ m }{L }

=>      T  =  77.172 ^2  *  \frac{  0.015  }{0.590}

=>      T  = 151.41 \  N

7 0
3 years ago
Which wave form oscillates both parallel and perpendicular to the direction of the wave motion? transverse waves, longitudinal w
Solnce55 [7]
Hope this answer helps:)

6 0
3 years ago
Other questions:
  • When a cup is placed on a table, which force prevents the cup from falling to the ground? A. gravitational force B. normal force
    8·2 answers
  • N capacitors are connected in parallel to form a "capacitor circuit". The capacitance of first capacitor is C, second one is C/2
    11·1 answer
  • Newton's universal law of gravitation says that every object exerts a force on another object. The shuttle has a gravitational f
    9·1 answer
  • A 55 kg block of ice slides down a frictionless ramp that is 2.0 m long and 0.91 m high. A worker pushes up against the ice, par
    8·1 answer
  • The motion of a car on a position-time graph is represented with a horizontal line. What does this indicate about the car’s moti
    15·1 answer
  • Question 2 Multiple Choice Worth 2 points)
    14·1 answer
  • A.
    13·1 answer
  • Rubbing two objects together turns the energy of motion into heat energy because of _____
    8·2 answers
  • A capacitor is connected across an ac source. Suppose the frequency of the source is doubled. What happens to the capacitive rea
    10·1 answer
  • S.I unit for moment of inertia of a fly wheel​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!