Answer:
8.46 N/C
Explanation:
Using Gauss law

Gauss's Law states that the electric flux through a surface is proportional to the net charge in the surface, and that the electric field E of a point charge Q at a distance r from the charge
Here, K is Coulomb's constant whose value is 
r = 0.43 + 0.106 = 0.536 m

7 2 3 5 8 1 6 4 here it is
Answer:
a) E = 1.47 × 10^5 N/C
b) south
Explanation:
The magnitude of an electric field can be defined mathematically as;
E = F/q ........1
Where,
E = magnitude of the electric field
F = electric force
q = charge on the proton
Given;
F = 2.36 × 10^-14 N
Note that charge on a proton is known as Qp = 1.602 × 10^-19 C
q = 1.602 × 10^-19 C
Substituting into equation 1, we have;
E = 2.36 × 10^-14 N/1.602 × 10^-19 C
E = 1.47 × 10^5 N/C
b) The direction of the electric field;
From equation 1
E = F/q ........1
since both electric field and electric force are vector quantity and q is a positive charge (constant), then both the electric field and electric force would be parallel to each other. Therefore the electric field is directed to the south also.
(When a vector is multiplied by a positive constant the direction remains the same)
Answer:
Running or Jogging
Running and jogging are both great options for aerobic conditioning. Whether you run at the gym or outside, you are in control of setting the intensity of your workout. When aiming to build muscle mass, you can add more resistance or jog at an incline, along with increasing your speed.
Explanation:
The wavelength and frequency of the wave is altered, resulting in a change in the amount of energy carried.