Answer:
The regular price of the balls is $8
Step-by-step explanation:
The sporting goods store sales promotion is as follows;
The price of the third ball after buying two balls at regular price = $1.00
The price of the number of balls Coach John pays for the balls he bought = $136
To buy 24 balls, we have;
2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1
Therefore;
The number of balls bought at regular price = The sum of the 2s = 16 balls
The number of balls bought for $1 = 24 - 16 = 8 balls
Let x represent the regular price of the balls, we have;
16 × x + 8 = 136
16·x = 138 - 8 = 128
x = 128/16 = 8
The regular price of the balls = x = $8.
Assume your line starts at zero, your first point is (-3,5) meaning your have a slope of 5/-3
[ f(x) = 5/-3x + b]
2 it will either land on heads or tails if you flip it once, hence 2 possible outcomes.
Answer:
a) N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
c) ∆N = -660 computers
Step-by-step explanation:
Since N(P) is a linear function
N(P) = mP + C
Where m is the slope and C is the intercept.
Case 1
N(1000) = 10000
10000 = 1000m + C ....1
Case 2
N(1700) = 5800
5800 = 1700m + C ....2
Subtracting equation 1 from 2
700m = 5800 - 10000
m = -4200/700
m = -6
Substituting m = -6 into eqn 1
10000 = (-6)1000 + C
C = 10000+ 6000 = 16000
N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
Slope is the change in number of computer sold per unit Change in price.
c) since slope m = -6 computers per dollar
∆P = 110 dollars
∆N = m × ∆P
Substituting the values,
∆N = -6 computers/dollar × 110 dollars
∆N = -660 computers.
The number of computer sold reduce by 660 when the price increase by 110 dollars
Answer:
b) 1.34
Step-by-step explanation:
The z score is used to determine the number of standard deviations by which the raw score is above or below the mean. If the z score is positive then the z score is above the mean while for a negative z score implies that it is below the mean. The z score is given by:

For the largest 9%, the score is 100% - 9% = 91% = 0.91
From the normal distribution table, the z score that corresponds to 0.91 is 1.34