The magnitude of the unknown height of the projectile is determined as 16.1 m.
<h3>
Magnitude of the height</h3>
The magnitude of the height of the projectile is calculated as follows;
H = u²sin²θ/2g
H = (36.6² x (sin 29)²)/(2 x 9.8)
H = 16.1 m
Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.
Learn more about height here: brainly.com/question/1739912
#SPJ1
Let's see: frequency of cellular phone waves (GSM phones) is (800-1900 MHz). If we look at the table of the electromagnetic spectrum, we can see that this range is contained within the frequencies of the microwaves, which include waves in the range 300 MHz-300 GHz.
So, summarizing, the correct answer is "microwaves".
Explanation:
For the equilibrium:
\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ
wood
gh−ρ
oil
g(h−x)−ρ
water
gx=0
\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ
wood
h−ρ
oil
(h−x)−ρ
water
x=0
(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0
x=2.54\ cmx=2.54 cm
Answer: 22.6 hours
Explanation:
The power is the measure of the rate of energy.
In this problem, the 12.0 V battery is rated at 51.0 Ah, which means it delivers 51.0 A of current in a time of t = 1 h = 3600 s. The power delivered by the battery can be written as

where
I is the current
V = 12.0 V is the voltage of the battery
So the energy delivered by the battery can be written as

Where

So the energy delivered is

At the same time, the headlight consumes 27.0 W of power, so 27 Joules of energy per second; Therefore, it will remain on for a time of:
