Answer: In gases the particles move rapidly in all directions, frequently colliding with each other and the side of the container. With an increase in temperature, the particles gain kinetic energy and move faster. The actual average speed of the particles depends on their mass as well as the temperature – heavier particles move more slowly than lighter ones at the same temperature. The oxygen and nitrogen molecules in air at normal room temperature are moving rapidly at between 300 to 400 metres per second. Unlike collisions between macroscopic objects, collisions between particles are perfectly elastic with no loss of kinetic energy.
Explanation: This is very different to most other collisions where some kinetic energy is transformed into other forms such as heat and sound. It is the perfectly elastic nature of the collisions that enables the gas particles to continue rebounding after each collision with no loss of speed. Particles are still subject to gravity and hit the bottom of a container with greater force than the top, and giving gases weight. Hope this helps with your problem! Byeeee :DDD
<span>
It contains 6.02 mc001-1.jpg 1023 grams of sodium chloride.
It is the mass of 12 carbon atoms.
It contains 6.02 mc001-2.jpg 1023 particles of a given substance.</span>
Titanium has 22 protons and electrons. The symbol for Titanium is (Ti).
Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴
It actually depends on the percentage of the concentration give. Percentages can be expressed as %mass/mass, %volume/volume or %mass/volume. To keep things simple, let's just assume that it is in %volume/volume. Thus, 13% of 520 mL is pure acid.
Volume of pure acid = 520*0.13 = 67.6 mL