Prevent the release of toxic vapored, dusts, mists, or gases into the workplace air
Mass can’t be destroyed. So since not all the mass was found in the products, that simply means that it was lost to the environment. For example, let’s say hydrogen and oxygen are the reactants and we get water in the product. Now that oxygen could have reacted with something else that we didn’t take into account when measuring the mass of the H2O released.
Tldr, some of the reactants were lost to the surroundings
That is a steep slope for sure, no doubt about it. Hope this helps!
Answer : The volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml
Solution : Given,
Molarity of aqueous
solution = 1.20 M = 1.20 mole/L
Volume of aqueous
solution = 50.0 ml = 0.05 L
(1 L = 1000 ml)
Molarity of
stock solution = 4.9 M = 4.9 mole/L
Formula used :

where,
= Molarity of aqueous
solution
= Molarity of
stock solution
= Volume of aqueous
solution
= Volume of
stock solution
Now put all the given values in this formula, we get the volume of
stock solution.

By rearranging the term, we get

Therefore, the volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml
Answer:
4.6L
Explanation:
Use the equation (P1*V1)/(T1)=(P2*V2)/(T2)
P= pressure
V= volume
T= temperature in kelvins (remember K= C + 273)
Convert atm to mmHg or vise versa
1.5atm*(760mmhg/1atm)= 1140mmHg
(733mmHg * 5.36L)/(298K)=(1140mmHg * V)/(402K)
V= 4.6 or 4.65L (depending on sig figs)