Answer:
bro can u see the answers?
the answer is -65y+11x/10
Step-by-step explanation:
Suppose

is the number of possible combinations for a suitcase with a lock consisting of

wheels. If you added one more wheel onto the lock, there would only be 9 allowed possible digits you can use for the new wheel. This means the number of possible combinations for

wheels, or

is given recursively by the formula

starting with

(because you can start the combination with any one of the ten available digits 0 through 9).
For example, if the combination for a 3-wheel lock is 282, then a 4-wheel lock can be any one of 2820, 2821, 2823, ..., 2829 (nine possibilities depending on the second-to-last digit).
By substitution, you have

This means a lock with 55 wheels will have

possible combinations (a number with 53 digits).
Answer:
- Family 1: $1.850
- Family 2: $1.350
Step-by-step explanation:
We know that the total monthly payment is 3200, so if we call Pa (family A`s payment) and Pb (Family B's payment) the payments:
- Pa+Pb=3200
- also, Pa = Pb+500
So if we replace Pa in the first ecuation:
- Pb+500+Pb=3200
- 2Pb= 3200-500
- Pb=2700/2= $1.350
then Pa+Pb=3200 => Pa= 3200-1350= $1.850
Good Luck!
Answer:
We conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
Step-by-step explanation:
We know that the perimeter of a rectangle = 2(l+w)
i.e.
P = 2(l+w)
Here
Given that the length and width of the playground by a scale factor of 2
A scale factor of 2 means we need to multiply both length and width by 2.
i.e
P = 2× 2(l+w)
P' = 2 (2(l+w))
= 2P ∵ P = 2(l+w)
Therefore, we conclude that If Tawnee increases the length and width of the playground by a scale factor of 2, the perimeter of the new playground will be twice the perimeter of the original playground.
Answer:
Test statistic Z= 0.13008 < 1.96 at 0.10 level of significance
null hypothesis is accepted
There is no difference proportion of positive tests among men is different from the proportion of positive tests among women
Step-by-step explanation:
<em>Step(I)</em>:-
Given surveyed two random samples of 390 men and 360 women who were tested
first sample proportion

second sample proportion

Step(ii):-
Null hypothesis : H₀ : There is no difference proportion of positive tests among men is different from the proportion of positive tests among women
Alternative Hypothesis:-
There is difference between proportion of positive tests among men is different from the proportion of positive tests among women

where

P = 0.920

Test statistic Z = 0.13008
Level of significance = 0.10
The critical value Z₀.₁₀ = 1.645
Test statistic Z=0.13008 < 1.645 at 0.1 level of significance
Null hypothesis is accepted
There is no difference proportion of positive tests among men is different from the proportion of positive tests among women