Answer:
case 2 with two workers is the optimal decision.
Step-by-step explanation:
Case 1—One worker:A= 3/hour Poisson, ¡x =5/hour exponential The average number of machines in the system isL = - 3. = 4 = lJr machines' ix-A 5 - 3 2 2Downtime cost is $25 X 1.5 = $37.50 per hour; repair cost is $4.00 per hour; and total cost per hour for 1worker is $37.50 + $4.00
= $41.50.Downtime (1.5 X $25) = $37.50 Labor (1 worker X $4) = 4.00
$41.50
Case 2—Two workers: K = 3, pl= 7L= r= = 0.75 machine1 p. -A 7 - 3Downtime (0.75 X $25) = S J 8.75Labor (2 workers X S4.00) = 8.00S26.75Case III—Three workers:A= 3, p= 8L= ——r = 5- ^= § = 0.60 machinepi -A 8 - 3 5Downtime (0.60 X $25) = $15.00 Labor (3 workers X $4) = 12.00 $27.00
Comparing the costs for one, two, three workers, we see that case 2 with two workers is the optimal decision.
(5.6)(1.8) the answer is 10.08
Answer:
answer choice c is correct
:)
hope that helped. <3
<em>bye now! </em>
<em>have a nice day too <3.</em><u><em> k bye</em></u>
4/10 chance of rain Friday, 6/10 chance Saturday and 1/10 chance Sunday.
That means the chances of it not raining are 6/10 4/10 and 9/10
You multiply these together to get the chances of it not raining.
You get 216/1000 or .216 or 2.16% chance of it not raining