The volume is directly proportional to the absolute temperature so the answer is A.
Answer:
See Explanation
Explanation:
According to the question, it is established that the pain caused by a lot of insect bites owes to the acidity of the insect bites.
If this is true, then there is an urgent need to neutralize the acidic insect bite using a basic substance.
Hence the pH of the creams used to treat insect bites should be basic(having a high pH).
2. The compound methene can not exist because it is supposed to be derived from the alkane called methane which contains only one carbon atom.
In order to form an alkene, there must be a double bond between two carbon atoms. This is not possible because there is only one carbon atom in the hypothetical methene. Hence, a compound named methene cannot exist.
<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>