Solution = homogeneous mixture
Suspension = heterogeneous mixture
Colloid = homogeneous mixure
The balanced equation for the reaction is as follows;
Li₂O + H₂O ---> 2LiOH
Stoichiometry of Li₂O to H₂O is 1:1
Mass of Li₂O reacted - 18.9 g
Number of Li₂O moles reacted - 18.9 g / 30 g/mol = 0.63 mol
An equivalent amount of moles of water have reacted - 0.63 mol
mass of water required - 0.63 mol x 18 g/mol = 11.34 g
A mass of 11.34 g of water is required
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
The specific heat capacity the substance is calculated using the below formula
Q(heat) = Mc delta T
Q =1560 cal
m(mass) 312 g
delta T (change in temperature ) = 15 c
C= specific heat capacity=?
by making c the subject of the formula
c=Q/m delta T
= 1560 cal/ 312g x 15 c = 0.33 cal/g/c (answer B)
Answer:
Wind between 39-46 mph can cause branches and limbs to break, make it hard for cars to stay on the road wind between 47-54 can cause lighting difficulties, wind between the 60-78 can cause trees to uproot and damage.
Explanation: