The question mentions a change in temperature from 25 to 50 °C. With that, the aim of the question is to determine the change in volume based on that change in temperature. Therefore this question is based on Gay- Lussac's Gas Law which notes that an increase in temperature, causes an increase in pressure since the two are directly proportional (once volume remains constant). Thus Gay-Lussac's Equation can be used to solve for the answer.
Boyle's Equation:

=

Since the initial temperature (T₁) is 25 C, the final temperature is 50 C (T₂) and the initial pressure (P₁) is 103 kPa, then we can substitute these into the equation to find the final pressure (P₂).

=

∴ by substituting the known values, ⇒ (103 kPa) ÷ (25 °C) = (P₂) ÷ (50 °C)
⇒ P₂ = (4.12 kPa · °C) (50 °C)
=
206 kPa
Thus the pressure of the gas since the temperature was raised from 25 °C to 50 °C is
206 kPa
For multiple covalent bonds to form in molecules, the molecules must contain carbon nitrogen or oxygen.
<u>Explanation:</u>
- Think about carbon dioxide (CO2). If every oxygen atom imparts one electron to the carbon molecule, there will be 6 electrons in carbon particle and 7 electrons in every oxygen atom. This doesn't give the carbon atom as a total octet.
- Sometimes more than one set of electrons is shared between two atoms. In carbon dioxide, a second electron from every oxygen atom is likewise imparted with the central carbon atom, and the carbon particle imparts one more electron with every oxygen atom.
- Two sets of electrons shared between two atoms make a double bond between the atoms. A few particles contain triple bonds, covalent bonds in which three sets of electrons are shared by two atoms.
John Dalton was a scientist who proposed that all matter consists of atoms. At this stage, no one had yet discovered neutrons and the nucleus. As a result, Dalton's model consisted of a single atom i.e. the atom was the smallest object.
A mass spectrometer is an instrument that is able to see what is inside an atom. Scientists have been able to prove that the item is not the smallest object in the world. Atoms are made up of smaller objects called protons, neutrons and electrons.
We can, therefore, safely conclude that data from mass spectrometry has helped modern scientists to make modifications to Dalton's model. <span>
</span>
Answer:
Atomic Mass
Explanation:
it is also sometimes below the symbol of the element :)
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol