Empirical formula: The formula consist of proportions of the elements which is present in the compound or the simplest whole number ratios of atoms.
Now, molecular formula is equal to the product of n (ratio) and empirical formula.
Molecular formula =
(1)
molecular formula =
(given)
Since, 6 is the smallest subscript in above molecular formula to get the simpler whole number of atoms. Therefore, divide all the subscripts i.e. number of carbon atoms (12), number of hydrogen atoms (24) and number of oxygen atoms (6) by 6.
empirical formula becomes 
Thus, according to the formula (1)
Hence, empirical formula of given molecular formula is 
Answer:
1.76 * 6.02*10^23 = 1.05952*10^24
1.05952*2 = 2.11904 *10^24 oxygen and 1.05952*10^24 sulfur atoms
Answer:
yes the ones u chose are correct.
Explanation:
Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.