1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
3 years ago
7

Which of the following represents the shortest distance?

Chemistry
1 answer:
natulia [17]3 years ago
8 0

Answer:

28.0 centimeters i believe

Explanation:

You might be interested in
What is the product of the reaction of (S)-2-bromobutane with sodium methoxide in acetone?
Serggg [28]

Answer:

2-methoxybutane

Explanation:

This reaction is an example of Nucleophilic substitution reaction. Also, the reaction of (S)-2-bromobutane with sodium methoxide in acetone, is bimolecular nucleophilic substitution (SN2). The reaction equation is given below.

(S)-2-bromobutane + sodium methoxide (in acetone) → 2-methoxybutane

7 0
2 years ago
In atmospheric chemistry, the following chemical reaction converts SO2, the predominant oxide of sulfur that comes from combusti
Misha Larkins [42]

Answer:

Explanation:

From the given information;

The chemical reaction can be well presented as follows:

\mathtt{SO_{2(g)} + \dfrac{1}{2}O_{2(g)} }  ⇄ \mathtt{3SO_{2(l)}}

Now, K is known to be the equilibrium constant and it can be represented in terms of each constituent activity:

i.e

K = \dfrac{a_{so_3}}{a_{so_2} a_{o_2}^{\frac{1}{2}}}

However, since we are dealing with liquids solutions;

K = \dfrac{1}{\dfrac{Pso_2}{P^0}\Big ( \dfrac{Po_2}{P^0} \Big)^{1/2}}   since the activity of a_{so_3} is equivalent to 1

Hence, under standard conditions(i.e at a pressure of 1 bar)

K = \dfrac{1}{Pso_2Po_2^{1/2}}

(b)

From the CRC Handbook, we are meant to determine the value of the Gibb free energy by applying the formula:

\Delta _{rxn} G^o = \sum \Delta_f \ G^o (products) - \sum \Delta_fG^o (reactants) \\ \\ = (1) (-368 \ kJ/mol) - (\dfrac{1}{2}) (0) - ((1) (-300.13 \ kJ/mol)) \\ \\ = -368 \ kJ/mol + 300.13 \ kJ/mol \\ \\  \simeq -68 \ kJ/mol

Thus, for this reaction; the Gibbs frree energy = -68 kJ/mol

(c)

Le's recall that:

At equilibrium, the instantaneous free energy is usually zero &

Q(reaction quotient) is equivalent to K(equilibrium constant)

So;

\mathtt{\Delta _{rxn} G = \Delta _{rxn} G^o + RT In Q}

\mathtt{0- \Delta _{rxn} G^o = RTIn K } \\ \\ \mathtt{ \Delta _{rxn} G^o = -RTIn K }  \\ \\  K = e^{\dfrac{\Delta_{rxn} G^o}{RT}} \\ \\  K = e^{^{\dfrac{67900 \ J/mol}{8.314 \ J/mol \times 298 \ K}} }

K =7.98390356\times 10^{11} \\ \\  \mathbf{K = 7.98 \times 10^{11}}

(d)

The direction by which the reaction will proceed can be determined if we can know the value of Q(reaction quotient).

This is because;

If  Q < K, then the reaction will proceed in the right direction towards the products.

However, if Q > K , then the reaction goes to the left direction. i.e to the reactants.

So;

Q= \dfrac{1}{Pso_2Po_2^{1/2}}

Since we are dealing with liquids;

Q= \dfrac{1}{1 \times 1^{1/2}}

Q = 1

Since Q < K; Then, the reaction proceeds in the right direction.

Hence, SO2 as well O2 will combine to yield SO3, then condensation will take place to form liquid.

8 0
3 years ago
How many moles of sodium will react with water to form sodium hydroxide and 4.0 moles of hydrogen?
11Alexandr11 [23.1K]
It is 4/10 of moles is this ane halp?
5 0
3 years ago
What is the expected oxidation state for the most common ion of element 2
lozanna [386]
Answer: 1+

Justification:

The ionization energies tell the amount of energy needed to release an electron and form a ion. The first ionization energy if to loose one electron and form the ion with oxidation state 1+, the second ionization energy is the energy to loose a second electron and form the ion with oxidation state 2+, the third ionization energy is the energy to loose a third electron and form the ion with oxidation state 3+.

The low first ionization energy of element 2 shows it will lose an electron relatively easily to form the ion with oxidations state 1+.

The relatively high second ionization energy (and third too) shows that it is very difficult for this atom to loose a second electron, so it will not form an ions with oxidation state 2+. Furthermore, given the relatively high second and third ionization energies, you should think that the oxidation states 2+ and 3+ for element 2 never occurs.

Therefore, the expected oxidation state for the most common ion of element 2 is 1+.
3 0
2 years ago
The equilibrium constant, k, for a redox reaction at 25° c is 7.3 × 107. what is the value of e° if the overall reaction transfe
Novay_Z [31]

Answer:

0.23 V.

Explanation:

<em>∵ ΔG° = -RT lnK.</em>

∴ ΔG° = -RTlnK = -(8.314 J/mol)(298 K) ln(7.3 × 10⁷) = - 44.86 x 10³ J/mol.

<em>∵ ΔG° = - nFE°</em>

∴ E° = - ΔG°/nF = - (- 44.86 x 10³ J/mol)/(2 x 96500 s.A/mol) = 0.2324 V ≅ 0.23 V.

5 0
3 years ago
Other questions:
  • When heat is applied to water a 10 degrees Celsius, what does the energy transform into?
    13·1 answer
  • Help please?!??!??!?!?!
    13·1 answer
  • _________ refers to the total energy of a system.
    5·2 answers
  • PLEASEEE PLEASEEE HELP
    8·1 answer
  • Pb(OH)2 + _HCI → __ H2O + _<br>PbCl2​
    6·1 answer
  • Nylones are: a, amides b, polymides
    14·1 answer
  • Please help with Chemistry! Very urgent! I’ll give you 40 points
    10·1 answer
  • Best way to separate a solid from a liquid what separation technique is needed​
    15·2 answers
  • Cylinder of air at 1.5 atm of pressure is kept at room temperature while a piston compresses the air from 40 l down to 10 ml. wh
    6·1 answer
  • .an open flask contains 0.200 mol of air. atmospheric pressure is 745 mmhg and room temperature is 68˚f. how many moles are pres
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!