Answer:
The breaking in <em>molecular</em> bonds in food releases energy for your body to use.
They live half their lives in water and most of their life on land
Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
Answer:
S = V t + 1/2 a t^2 = 5 m/s * 5 s + .2 m/s^2 * 25 s^2 =
25 m + 5 m = 30 m distance traveled
Vf = V + a t = 5 m/s + .4 m/s^2 * 5 s = (5 + 2) m/s = 7 m/s final velocity
Answer:
<em>The frequency changes by a factor of 0.27.</em>
<em></em>
Explanation:
The frequency of an object with mass m attached to a spring is given as
= 
where
is the frequency
k is the spring constant of the spring
m is the mass of the substance on the spring.
If the mass of the system is increased by 14 means the new frequency becomes
= 
simplifying, we have
= 
= 
if we divide this final frequency by the original frequency, we'll have
==>
÷
==>
x
==> 1/3.742 = <em>0.27</em>