Answer:
0.79 g
Explanation:
Let's introduce a strategy needed to solve any similar problem like this:
- Apply the mass conservation law (assuming that this reaction goes 100 % to completion): the total mass of the reactants should be equal to the total mass of the products.
Based on the mass conservation law, we need to identify the reactants first. Our only reactant is sodium bicarbonate, so the total mass of the reactants is:

We have two products formed, sodium carbonate and carbonic acid. This implies that the total mass of the products is:

Apply the law of mass conservation:

Substitute the given variables:

Rearrange for the mass of carbonic acid:

Answer:
(2R,3S)-2-chloro-3,5-dimethylhexane
Explanation:
As first step we have the <u>attack of the OH group</u> to the P atom in the PCl3 and one of the Cl atoms would leave. Then we will have a <u>rearrangement</u> to produce a <u>double bond </u>with the oyxgen on the OH. Finally the Cl produced will a<u>ttack the carbon</u> in a <u>Sn2 substitution reaction</u> to produce the halide with an <u>opposite configuration</u>.
Answer: Option (c) is the correct answer.
Explanation:
HF is a weak acid and not a strong acid. This is because fluorine is a highly electronegative atom and when it combines with a hydrogen atom then it will attract the valence electron of hydrogen atom more towards itself.
As a result, it will not dissociates easily to give hydrogen ion. Hence, it acts as a weak acid.
A neutralization reaction is defined as a reaction in which an acid reacts with a base to give salt and water. For example, 
It is true that, spectator ions "appear in the total ionic equation for a reaction, but not in the net ionic equation".
Titration is defined as a process in which concentration of an unknown solution is determined using a solution of known concentration.
Thus, we can conclude that the statement HF, HCl, and HNO3 are all examples of strong acids, is false.
Answer:
D. Increase in UV radiation
Explanation:
I hope it helps. brainliest pls