<u>Answer:</u> The rate law expression for the given reaction is written below.
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^2[H_2]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BH_2%5D%5E2)
Hence, the rate law expression for the given reaction is written above.
The correct Answer for this question is D
Answer : If we consider the molecule of oxygen gas which in diatomic state, is bonded to other atom which is of same element this is called as homonuclear.
While in HCl there is a heteronuclear bonding observed because there are two different elements getting involved in the bond formation, also it creates a electrovalent species in itself and makes it more polar. They are creating a dipole moment by separating different charges in the molecule which cause it to get tightly bonded with each other.
When an object enters the Earth's atmosphere, it experiences a few forces, including gravity and drag. Gravity will naturally pull an object back to earth.
-Hope this helped, have a great day. ;)
Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation: